Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Med Primatol ; 52(6): 353-360, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655719

RESUMO

BACKGROUND: Alouatta palliata palliata are an ecologically flexible howler monkey subspecies that has recently been relisted as Endangered. Populations are declining through much of the subspecies' range, including at our study site at La Pacifica, Costa Rica. Our objectives were to screen blood hematology and biochemistry samples collected from this wild population to elucidate their baseline health. METHODS: We collected blood samples from 38 adult individuals from across the study site and analyzed 13 hematology and 14 biochemistry parameters. RESULTS: Most hematology and blood biochemistry parameter values were similar between males and females. However, mean hemoglobin was significantly lower, and mean white blood cell count was significantly higher in females; and mean calcium and mean creatinine were significantly lower in females compared to males. CONCLUSIONS: Overall, the La Pacifica population appeared healthy based on the blood parameters analyzed from sampled individuals. Our results were also largely consistent with published data available from other populations of A. p. palliata, and with reference values for captive Alouatta caraya.


Assuntos
Alouatta caraya , Alouatta , Hematologia , Feminino , Masculino , Animais , Costa Rica
2.
Br J Haematol ; 203(2): 288-294, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37553783

RESUMO

The role of the gastrointestinal microbiome in predisposing to chronic graft-versus-host disease (cGVHD), an immune-mediated haematopoietic cell transplant (HCT) complication, is not well defined. We examined the relationship of the host faecal microbiome with subsequent cGVHD development by analysing baseline stool samples as well as post-HCT changes in microbiome composition and metabolite pathway analyses. We analysed pre-transplant baseline samples from 11 patients who subsequently developed cGVHD compared to 13 controls who did not develop acute GVHD or cGVHD at any time. We found a significant differential abundance of multiple taxa at baseline between cGVHD versus controls, including the Actinobacteria phylum and Clostridium genus. A subgroup analysis of longitudinal samples within each patient revealed a greater loss of alpha diversity from baseline to post-engraftment in patients who subsequently developed cGVHD. Metabolic pathways analysis revealed that two pathways associated with short-chain fatty acid metabolism were enriched in cGVHD patient microbiomes: ß-oxidation and acyl-CoA synthesis, and γ-aminobutyrate shunt. In contrast, a tryptophan catabolism pathway was enriched in controls. Our findings show a distinct pattern of baseline microbiome and metabolic capacity that may play a role in modulating alloreactivity in patients developing cGVHD. These findings support the therapeutic potential of microbiome manipulation for cGVHD prevention.

3.
Front Microbiol ; 13: 1041942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601403

RESUMO

Introduction: Gastrointestinal illnesses associated with the consumption of shellfish contaminated with Vibrio parahaemolyticus have a negative impact on the shellfish industry due to recalls and loss of consumer confidence in products. This bacterial pathogen is very diverse and specific sequence types (STs), ST631 and ST36, have emerged as prevalent causes of Vibrio foodborne disease outbreaks in the US, though other STs have been implicated in sporadic cases. We investigated whether bacteriophages could be used as a proxy to monitor for the presence of distinct V. parahaemolyticus STs in coastal waters. Methods: For this purpose, bacteriophages infecting V. parahaemolyticus were isolated from water samples collected on the Northeast Atlantic coast. The isolated phages were tested against a collection of 29 V. parahaemolyticus isolates representing 18 STs, including six clonal complexes (CC). Four distinct phages were identified based on their ability to infect different sets of V. parahaemolyticus isolates. Results and Discussion: Overall, the 29 bacterial isolates segregated into one of eight patterns of susceptibility, ranging from resistance to all four phages to susceptibility to any number of phages. STs represented by more than one bacterial isolate segregated within the same pattern of susceptibility except for one V. parahaemolyticus ST. Other patterns of susceptibility included exclusively clinical isolates represented by distinct STs. Overall, this study suggests that phages populating coastal waters could be exploited to monitor for the presence of V. parahaemolyticus STs known to cause foodborne outbreaks.

5.
Sci Transl Med ; 12(571)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239390

RESUMO

The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by acute and chronic graft-versus-host disease (GVHD). The impact of obesity on allo-HSCT outcomes is poorly understood. Here, we report that obesity had a negative and selective impact on acute gut GVHD after allo-HSCT in mice with diet-induced obesity (DIO). These animals exhibited increased gut permeability, endotoxin translocation across the gut, and radiation-induced gastrointestinal damage after allo-HSCT. After allo-HSCT, both male and female DIO mouse recipients showed increased proinflammatory cytokine production and expression of the GVHD marker ST2 (IL-33R) and MHC class II molecules; they also exhibited decreased survival associated with acute severe gut GVHD. This rapid-onset, obesity-associated gut GVHD depended on donor CD4+ T cells and occurred even with a minor MHC mismatch between donor and recipient animals. Retrospective analysis of clinical cohorts receiving allo-HSCT transplants from unrelated donors revealed that recipients with a high body mass index (BMI, >30) had reduced survival and higher serum ST2 concentrations compared with nonobese transplant recipients. Assessment of both DIO mice and allo-HSCT recipients with a high BMI revealed reduced gut microbiota diversity and decreased Clostridiaceae abundance. Prophylactic antibiotic treatment protected DIO mouse recipients from endotoxin translocation across the gut and increased inflammatory cytokine production, as well as gut pathology and mortality, but did not protect against later development of chronic skin GVHD. These results suggest that obesity-induced alterations of the gut microbiota may affect GVHD after allo-HSCT in DIO mice, which could be ameliorated by prophylactic antibiotic treatment.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Animais , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Camundongos , Obesidade , Estudos Retrospectivos
6.
Bioinformatics ; 36(13): 4088-4090, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32365167

RESUMO

SUMMARY: The software pipeline SHOGUN profiles known taxonomic and gene abundances of short-read shotgun metagenomics sequencing data. The pipeline is scalable, modular and flexible. Data analysis and transformation steps can be run individually or together in an automated workflow. Users can easily create new reference databases and can select one of three DNA alignment tools, ranging from ultra-fast low-RAM k-mer-based database search to fully exhaustive gapped DNA alignment, to best fit their analysis needs and computational resources. The pipeline includes an implementation of a published method for taxonomy assignment disambiguation with empirical Bayesian redistribution. The software is installable via the conda resource management framework, has plugins for the QIIME2 and QIITA packages and produces both taxonomy and gene abundance profile tables with a single command, thus promoting convenient and reproducible metagenomics research. AVAILABILITY AND IMPLEMENTATION: https://github.com/knights-lab/SHOGUN.


Assuntos
Microbiota , Software , Teorema de Bayes , Análise de Dados , Metagenômica , Microbiota/genética
7.
Anim Microbiome ; 2(1): 16, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33499991

RESUMO

BACKGROUND: The gut microbiome harbors trillions of bacteria that play a major role in dietary nutrient extraction and host metabolism. Metabolic diseases such as obesity and diabetes are associated with shifts in microbiome composition and have been on the rise in Westernized or highly industrialized countries. At the same time, Westernized diets low in dietary fiber have been shown to cause loss of gut microbial diversity. However, the link between microbiome composition, loss of dietary fiber, and obesity has not been well defined. RESULTS: To study the interactions between gut microbiota, dietary fiber, and weight gain, we transplanted captive and wild douc gut microbiota into germ-free mice and then exposed them to either a high- or low-fiber diet. The group receiving captive douc microbiota gained significantly more weight, regardless of diet, while mice receiving a high-fiber diet and wild douc microbiota remained lean. In the presence of a low-fiber diet, the wild douc microbiota partially prevented weight gain. Using 16S rRNA gene amplicon sequencing we identified key bacterial taxa in each group, specifically a high relative abundance of Bacteroides and Akkermansia in captive douc FMT mice and a higher relative abundance of Lactobacillus and Clostridium in the wild douc FMT mice. CONCLUSIONS: In the context of our germ-free mouse experiment, wild douc microbiota could serve as a reservoir for microbes for cross-species transplants. Our results suggest that wild douc microbiota are tailored to diverse fiber diets and can prevent weight gain when exposed to a native diet.

8.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661848

RESUMO

A history of allergies doubles the risk of vulvodynia-a chronic pain condition of unknown etiology often accompanied by increases in numbers of vulvar mast cells. We previously established the biological plausibility of this relationship in mouse models where repeated exposures to the allergens oxazolone or dinitrofluorobenzene on the labiar skin or inside the vaginal canal of ND4 Swiss Webster outbred mice led to persistent tactile sensitivity and local increases in mast cells. In these models, depletion of mast cells alleviated pain. While exposure to cleaning chemicals has been connected to elevated vulvodynia risk, no single agent has been linked to adverse outcomes. We sensitized female mice to methylisothiazolinone (MI)-a biocide preservative ubiquitous in cosmetics and cleaners-dissolved in saline on their flanks, and subsequently challenged them with MI or saline for ten consecutive days in the vaginal canal. MI-challenged mice developed persistent tactile sensitivity, increased vaginal mast cells and eosinophils, and had higher serum Immunoglobulin E. Therapeutic and preventive intra-vaginal administration of Δ9-tetrahydrocannabinol reduced mast cell accumulation and tactile sensitivity. MI is known to cause skin and airway irritation in humans, and here we provide the first pre-clinical evidence that repeated MI exposures can also provoke allergy-driven genital pain.


Assuntos
Cosméticos/toxicidade , Dermatite Alérgica de Contato/etiologia , Mastócitos/efeitos dos fármacos , Conservantes Farmacêuticos/toxicidade , Tiazóis/toxicidade , Vagina/efeitos dos fármacos , Alérgenos , Animais , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/epidemiologia , Dronabinol/uso terapêutico , Feminino , Humanos , Imunoglobulina E/sangue , Mastócitos/metabolismo , Camundongos , Mucosa , Dor/induzido quimicamente , Pele , Vagina/imunologia
9.
PLoS One ; 14(8): e0220850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31393924

RESUMO

Gut dysbiosis has been associated with worse allogeneic hematopoietic cell transplantation (allo-HCT) outcomes. We reported an association between intrinsically vancomycin-resistant enterococci (iVRE: E. gallinarum and E. casseliflavus) gut colonization and lower post-transplant mortality. In this study, using an expanded cohort, we evaluated whether our previously observed association is species-specific. We included allo-HCT recipients with ≥1 positive rectal swab or stool culture for iVRE between days -14 and +14 of transplant. To investigate whether iVRE modulate the gut microbiota, we performed agar diffusion assays. To investigate whether iVRE differ in their ability to activate the aryl hydrocarbon receptor, we analyzed iVRE genomes for enzymes in the shikimate and tryptophan pathways. Sixty six (23 E. casseliflavus and 43 E. gallinarum) of the 908 allograft recipients (2011-2017) met our inclusion criteria. Overall survival was significantly higher in patients with E. casseliflavus (91% vs. 62% at 3 years, P = 0.04). In multivariable analysis, E. casseliflavus gut colonization was significantly associated with reduced all-cause mortality (hazard ratio 0.20, 95% confidence interval 0.04-0.91, P = 0.04). While agar assays were largely unremarkable, genome mining predicted that E. casseliflavus encodes a larger number of enzymes in the tryptophan metabolism pathway. In conclusion, E. casseliflavus gut colonization is associated with reduced post-HCT morality. Further research is needed to understand the mechanisms for this association.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas/mortalidade , Enterococos Resistentes à Vancomicina/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Pessoa de Meia-Idade , Especificidade da Espécie , Análise de Sobrevida , Fatores de Tempo , Transplante Homólogo/mortalidade , Resultado do Tratamento , Triptofano/metabolismo , Enterococos Resistentes à Vancomicina/enzimologia , Adulto Jovem
10.
Cell Host Microbe ; 25(6): 789-802.e5, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31194939

RESUMO

Diet is a key determinant of human gut microbiome variation. However, the fine-scale relationships between daily food choices and human gut microbiome composition remain unexplored. Here, we used multivariate methods to integrate 24-h food records and fecal shotgun metagenomes from 34 healthy human subjects collected daily over 17 days. Microbiome composition depended on multiple days of dietary history and was more strongly associated with food choices than with conventional nutrient profiles, and daily microbial responses to diet were highly personalized. Data from two subjects consuming only meal replacement beverages suggest that a monotonous diet does not induce microbiome stability in humans, and instead, overall dietary diversity associates with microbiome stability. Our work provides key methodological insights for future diet-microbiome studies and suggests that food-based interventions seeking to modulate the gut microbiota may need to be tailored to the individual microbiome. Trial Registration: ClinicalTrials.gov: NCT03610477.


Assuntos
Dieta , Microbioma Gastrointestinal , Microbiota , Adulto , Fezes/microbiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Metagenômica , Pessoa de Meia-Idade , Adulto Jovem
11.
Nat Commun ; 10(1): 2012, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043597

RESUMO

Small intestinal bacterial overgrowth (SIBO) has been implicated in symptoms associated with functional gastrointestinal disorders (FGIDs), though mechanisms remain poorly defined and treatment involves non-specific antibiotics. Here we show that SIBO based on duodenal aspirate culture reflects an overgrowth of anaerobes, does not correspond with patient symptoms, and may be a result of dietary preferences. Small intestinal microbial composition, on the other hand, is significantly altered in symptomatic patients and does not correspond with aspirate culture results. In a pilot interventional study we found that switching from a high fiber diet to a low fiber, high simple sugar diet triggered FGID-related symptoms and decreased small intestinal microbial diversity while increasing small intestinal permeability. Our findings demonstrate that characterizing small intestinal microbiomes in patients with gastrointestinal symptoms may allow a more targeted antibacterial or a diet-based approach to treatment.


Assuntos
Disbiose/microbiologia , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestino Delgado/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos , DNA Bacteriano/isolamento & purificação , Fibras na Dieta/administração & dosagem , Açúcares da Dieta/efeitos adversos , Disbiose/dietoterapia , Disbiose/tratamento farmacológico , Disbiose/fisiopatologia , Feminino , Gastroenteropatias/dietoterapia , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/fisiopatologia , Voluntários Saudáveis , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Projetos Piloto , Adulto Jovem
12.
Sci Rep ; 9(1): 6083, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988420

RESUMO

Acute leukemia (AL) patients undergoing intensive induction chemotherapy develop severe gut dysbiosis, placing them at heightened risk for infectious complications. Some AL patients will undergo "repeat therapy" (re-induction or salvage) due to persistent or relapsed disease. We hypothesized that prior injury to the microbiome during induction may influence dysbiosis patterns during repeat therapy. To test this hypothesis, we analyzed the bacterial microbiome profiles of thrice-weekly stool samples from 20 intensively treated AL patients (first induction: 13, repeat therapy: 7) by 16S rRNA sequencing. In mixed-effects modeling, repeat therapy was a significant predictor of Enterococcus expansion (P = 0.006), independently of antibiotic exposure, disease type, feeding mode, and week of chemotherapy. Bayesian analysis of longitudinal data demonstrated larger departures of microbial communities from the pre-chemotherapy baseline during repeat therapy compared to induction. This increased ecosystem instability during repeat therapy possibly impairs colonization resistance and increases vulnerability to Enterococcus outgrowth. Microbiota restoration therapies at the end of induction or before starting subsequent therapy warrant investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Disbiose/microbiologia , Enterococcus/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Adulto , Idoso , DNA Bacteriano/isolamento & purificação , Disbiose/induzido quimicamente , Disbiose/diagnóstico , Enterococcus/genética , Fezes/microbiologia , Feminino , Humanos , Quimioterapia de Indução/efeitos adversos , Quimioterapia de Indução/métodos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Terapia de Salvação/efeitos adversos , Terapia de Salvação/métodos , Análise de Sequência de DNA , Índice de Gravidade de Doença , Adulto Jovem
13.
Am J Primatol ; 81(10-11): e22977, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30997937

RESUMO

The mammalian order primates contains wide species diversity. Members of the subfamily Colobinae are unique amongst extant primates in that their gastrointestinal systems more closely resemble those of ruminants than other members of the primate order. In the growing literature surrounding nonhuman primate microbiomes, analysis of microbial communities has been limited to the hindgut, since few studies have captured data on other gut sites, including the foregut of colobine primates. In this study, we used the red-shanked douc (Pygathrix nemaeus) as a model for colobine primates to study the relationship between gastrointestinal bacterial community structure and gut site within and between subjects. We analyzed fecal and pregastric stomach content samples, representative of the hindgut and foregut respectively, using 16S recombinant DNA (rDNA) sequencing and identified microbiota using closed-reference operational taxonomic unit (OTU) picking against the GreenGenes database. Our results show divergent bacterial communities clearly distinguish the foregut and hindgut microbiomes. We found higher bacterial biodiversity and a higher Firmicutes:Bacteroides ratio in the hindgut as opposed to the foregut. These gut sites showed strong associations with bacterial function. Specifically, energy metabolism was upregulated in the hindgut, whereas detoxification was increased in the foregut. Our results suggest a red-shanked douc's foregut microbiome is no more concordant with its own hindgut than it is with any other red-shanked douc's hindgut microbiome, thus reinforcing the notion that the bacterial communities of the foregut and hindgut are distinctly unique. OPEN PRACTICES: This article has been awarded Open Materials and Open Data badges. All materials and data are publicly accessible via the IRIS Repository at https://www.iris-database.org/iris/app/home/detail?id=york:934328. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.


Assuntos
Bactérias/classificação , Colobinae/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/genética , Biodiversidade , Fezes/microbiologia , Genoma Bacteriano , Intestinos/microbiologia , Intestinos/fisiologia , Análise de Sequência de DNA , Estômago/microbiologia , Estômago/fisiologia
14.
Cell ; 175(4): 962-972.e10, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388453

RESUMO

Many US immigrant populations develop metabolic diseases post immigration, but the causes are not well understood. Although the microbiome plays a role in metabolic disease, there have been no studies measuring the effects of US immigration on the gut microbiome. We collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living in Thailand and the United States, including first- and second-generation immigrants and 19 Karen individuals sampled before and after immigration, as well as from 36 US-born European American individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that migration from a non-Western country to the United States is associated with immediate loss of gut microbiome diversity and function in which US-associated strains and functions displace native strains and functions. These effects increase with duration of US residence and are compounded by obesity and across generations.


Assuntos
Povo Asiático , Emigração e Imigração , Microbioma Gastrointestinal , Adulto , Bacteroides/isolamento & purificação , Fibras na Dieta/metabolismo , Emigrantes e Imigrantes , Humanos , Metagenoma , Obesidade/epidemiologia , Obesidade/microbiologia , Prevotella/isolamento & purificação , Estados Unidos
15.
mSystems ; 3(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443602

RESUMO

Although microbial communities are associated with human, environmental, plant, and animal health, there exists no cost-effective method for precisely characterizing species and genes in such communities. While deep whole-metagenome shotgun (WMS) sequencing provides high taxonomic and functional resolution, it is often prohibitively expensive for large-scale studies. The prevailing alternative, 16S rRNA gene amplicon (16S) sequencing, often does not resolve taxonomy past the genus level and provides only moderately accurate predictions of the functional profile; thus, there is currently no widely accepted approach to affordable, high-resolution, taxonomic, and functional microbiome analysis. To address this technology gap, we evaluated the information content of shallow shotgun sequencing with as low as 0.5 million sequences per sample as an alternative to 16S sequencing for large human microbiome studies. We describe a library preparation protocol enabling shallow shotgun sequencing at approximately the same per-sample cost as 16S sequencing. We analyzed multiple real and simulated biological data sets, including two novel human stool samples with ultradeep sequencing of 2.5 billion sequences per sample, and found that shallow shotgun sequencing recovers more-accurate species-level taxonomic and functional profiles of the human microbiome than 16S sequencing. We discuss the inherent limitations of shallow shotgun sequencing and note that 16S sequencing remains a valuable and important method for taxonomic profiling of novel environments. Although deep WMS sequencing remains the gold standard for high-resolution microbiome analysis, we recommend that researchers consider shallow shotgun sequencing as a useful alternative to 16S sequencing for large-scale human microbiome research studies where WMS sequencing may be cost-prohibitive. IMPORTANCE A common refrain in recent microbiome-related academic meetings is that the field needs to move away from broad taxonomic surveys using 16S sequencing and toward more powerful longitudinal studies using shotgun sequencing. However, performing deep shotgun sequencing in large longitudinal studies remains prohibitively expensive for all but the most well-funded research labs and consortia, which leads many researchers to choose 16S sequencing for large studies, followed by deep shotgun sequencing on a subset of targeted samples. Here, we show that shallow- or moderate-depth shotgun sequencing may be used by researchers to obtain species-level taxonomic and functional data at approximately the same cost as amplicon sequencing. While shallow shotgun sequencing is not intended to replace deep shotgun sequencing for strain-level characterization, we recommend that microbiome scientists consider using shallow shotgun sequencing instead of 16S sequencing for large-scale human microbiome studies.

16.
Elife ; 72018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30039798

RESUMO

The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.


Assuntos
Antibacterianos/efeitos adversos , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antibacterianos/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/imunologia , Íleo/microbiologia , Imunidade Inata/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos NOD , Microbiota/efeitos dos fármacos , Microbiota/imunologia
17.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719872

RESUMO

Next-generation sequencing technology is of great importance for many biological disciplines; however, due to technical and biological limitations, the short DNA sequences produced by modern sequencers require numerous quality control (QC) measures to reduce errors, remove technical contaminants, or merge paired-end reads together into longer or higher-quality contigs. Many tools for each step exist, but choosing the appropriate methods and usage parameters can be challenging because the parameterization of each step depends on the particularities of the sequencing technology used, the type of samples being analyzed, and the stochasticity of the instrumentation and sample preparation. Furthermore, end users may not know all of the relevant information about how their data were generated, such as the expected overlap for paired-end sequences or type of adaptors used to make informed choices. This increasing complexity and nuance demand a pipeline that combines existing steps together in a user-friendly way and, when possible, learns reasonable quality parameters from the data automatically. We propose a user-friendly quality control pipeline called SHI7 (canonically pronounced "shizen"), which aims to simplify quality control of short-read data for the end user by predicting presence and/or type of common sequencing adaptors, what quality scores to trim, whether the data set is shotgun or amplicon sequencing, whether reads are paired end or single end, and whether pairs are stitchable, including the expected amount of pair overlap. We hope that SHI7 will make it easier for all researchers, expert and novice alike, to follow reasonable practices for short-read data quality control. IMPORTANCE Quality control of high-throughput DNA sequencing data is an important but sometimes laborious task requiring background knowledge of the sequencing protocol used (such as adaptor type, sequencing technology, insert size/stitchability, paired-endedness, etc.). Quality control protocols typically require applying this background knowledge to selecting and executing numerous quality control steps with the appropriate parameters, which is especially difficult when working with public data or data from collaborators who use different protocols. We have created a streamlined quality control pipeline intended to substantially simplify the process of DNA quality control from raw machine output files to actionable sequence data. In contrast to other methods, our proposed pipeline is easy to install and use and attempts to learn the necessary parameters from the data automatically with a single command.

18.
Front Microbiol ; 9: 785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740416

RESUMO

Longitudinal, prospective studies often rely on multi-omics approaches, wherein various specimens are analyzed for genomic, metabolomic, and/or transcriptomic profiles. In practice, longitudinal studies in humans and other animals routinely suffer from subject dropout, irregular sampling, and biological variation that may not be normally distributed. As a result, testing hypotheses about observations over time can be statistically challenging without performing transformations and dramatic simplifications to the dataset, causing a loss of longitudinal power in the process. Here, we introduce splinectomeR, an R package that uses smoothing splines to summarize data for straightforward hypothesis testing in longitudinal studies. The package is open-source, and can be used interactively within R or run from the command line as a standalone tool. We present a novel in-depth analysis of a published large-scale microbiome study as an example of its utility in straightforward testing of key hypotheses. We expect that splinectomeR will be a useful tool for hypothesis testing in longitudinal microbiome studies.

19.
Biol Blood Marrow Transplant ; 24(6): 1260-1263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29407252

RESUMO

Pretransplant gut colonization with intrinsically vancomycin-resistant enterococci (iVRE) (Enterococcus gallinarum and Enterococcus casseliflavus) is uncommon and with unknown clinical impact. In a matched-pairs analysis of patients with versus without iVRE colonization (n = 18 in each group), we demonstrated significantly higher 2-year overall survival (86% [95% confidence interval, 52% to 96%] versus 35% [95% confidence interval, 8% to 65]; P <.01) and lower nonrelapse mortality (P <.01) among colonized patients. Putative metabolomes differentiated iVRE from E. faecalis/faecium and may contribute to a healthier gut microbiome in iVRE-colonized patients.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas/métodos , Enterococos Resistentes à Vancomicina , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Análise por Pareamento , Metaboloma , Recidiva , Taxa de Sobrevida , Transplante Homólogo/métodos , Resultado do Tratamento
20.
J Biol Chem ; 291(50): 25901-25910, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27780864

RESUMO

In human urinary tract infections, host cells release the antimicrobial protein siderocalin (SCN; also known as lipocalin-2, neutrophil gelatinase-associated lipocalin, or 24p3) into the urinary tract. By binding to ferric catechol complexes, SCN can sequester iron, a growth-limiting nutrient for most bacterial pathogens. Recent evidence links the antibacterial activity of SCN in human urine to iron sequestration and metabolomic variation between individuals. To determine whether these metabolomic associations correspond to functional Fe(III)-binding SCN ligands, we devised a biophysical protein binding screen to identify SCN ligands through direct analysis of human urine. This screen revealed a series of physiologic unconjugated urinary catechols that were able to function as SCN ligands of which pyrogallol in particular was positively associated with high urinary SCN activity. In a purified, defined culture system, these physiologic SCN ligands were sufficient to activate SCN antibacterial activity against Escherichia coli In the presence of multiple SCN ligands, native mass spectrometry demonstrated that SCN may preferentially combine different ligands to coordinate iron, suggesting that availability of specific ligand combinations affects in vivo SCN antibacterial activity. These results support a mechanistic link between the human urinary metabolome and innate immune function.


Assuntos
Antibacterianos/urina , Proteínas de Transporte/urina , Catecóis/urina , Infecções por Escherichia coli/urina , Escherichia coli , Infecções Urinárias/urina , Adolescente , Adulto , Antibacterianos/imunologia , Proteínas de Transporte/imunologia , Catecóis/imunologia , Infecções por Escherichia coli/imunologia , Feminino , Humanos , Imunidade Inata , Lipocalina-2 , Metaboloma/imunologia , Pessoa de Meia-Idade , Infecções Urinárias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA