RESUMO
Epitaxial growth of 2D transition metal dichalcogenides (TMDCs) on sapphire substrates has been recognized as a pivotal method for producing wafer-scale single-crystal films. Both step-edges and symmetry of substrate surfaces have been proposed as controlling factors. However, the underlying fundamental still remains elusive. In this work, through the molybdenum disulfide (MoS2) growth on C/M sapphire, it is demonstrated that controlling the sulfur evaporation rate is crucial for dictating the switch between atomic-edge guided epitaxy and van der Waals epitaxy. Low-concentration sulfur condition preserves O/Al-terminated step edges, fostering atomic-edge epitaxy, while high-concentration sulfur leads to S-terminated edges, preferring van der Waals epitaxy. These experiments reveal that on a 2 in. wafer, the van der Waals epitaxy mechanism achieves better control in MoS2 alignment (≈99%) compared to the step edge mechanism (<85%). These findings shed light on the nuanced role of atomic-level thermodynamics in controlling nucleation modes of TMDCs, thereby providing a pathway for the precise fabrication of single-crystal 2D materials on a wafer scale.
RESUMO
Zeolitic imidazolate framework-8 (ZIF-8) exhibits excellent performance in capturing iodine. However, the solvent-based procedures and raw materials for ZIF-8 synthesis often lead to secondary pollution. We developed a solvent-minimizing method for preparing ZIF-8 via ball milling of raw material obtained from spent alkaline batteries, and studied its iodine-capture performance and structural changes. Exposure of the ZIF-8 to iodine vapor for 60 min demonstrated that it exhibited industrially competitive iodine-capture performance (the adsorbed amount reaches to 1123 mg g-1 within 60 min). Spectroscopic studies showed that ZIF-8 underwent a structural transformation upon iodine loading. Iodine molecules were adsorbed onto the surface of ZIF-8 and also formed C-I bond with the methyl groups on the imidazole rings, reducing iodine release. This work represents a comprehensive revelation of long-range order and short-range order evolution of ZIF-8 during iodine vapor adsorption over time. Moreover, this green synthesis of ZIF-8 is of lower cost and generates fewer harmful by-products than existing methods, and the produced ZIF-8 effectively entraps toxic iodine vapor. Thus, this synthesis enables a sustainable and circular material flow for beneficial utilization of waste materials.
RESUMO
Nuclear power has emerged as a pivotal contributor to the global electricity supply owing to its high efficiency and low-carbon characteristics. However, the rapid expansion of the nuclear industry has resulted in the production of a significant amount of hazardous effluents that contain various radionuclides, such as 137Cs and 90Sr. Effectively removing 137Cs and 90Sr from radioactive effluents prior to discharge is a critical challenge. Layered metal sulfides exhibit significant potential as ion exchangers for the efficient uptake of Cs+ and Sr2+ from aqueous solutions owing to their open and exchangeable frameworks and the distinctive properties of their soft S2- ligands. This review provides a detailed account of layered metal sulfides with MaSb c- frameworks (M = Sb, In, Sn), including their synthesis methods, structural characteristics, and Cs+ and Sr2+ removal efficiencies. Furthermore, we highlight the advantages of layered metal sulfides, such as their relatively high ion exchange capacities, broad active pH ranges, and structural stability against acid and radiation, through a comparative evaluation with other conventional ion exchangers. Finally, we discuss the challenges regarding the practical application of layered metal sulfides in radionuclide scavenging.
RESUMO
Bioelectrochemical techniques are quick, efficient, and sustainable alternatives for treating heavy metal soils. The use of carbon nanomaterials in combination with electroactive microorganisms can create a conductive network that mediates long-distance electron transfer in an electrode system, thereby resolving the issue of low electron transfer efficiency in soil remediation. As a multifunctional soil heavy metal remediation technology, its application in organic remediation has matured, and numerous studies have demonstrated its potential for soil heavy metal remediation. This is a ground-breaking method for remediating soils polluted with high concentrations of heavy metals using soil microbial electrochemistry. This review summarizes the use of bioelectrochemical systems with modified anode materials for the remediation of soils with high heavy metal concentrations by discussing the mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems, focusing on the suitability of carbon nanomaterials and acidophilic bacteria. Finally, we discuss the emerging limitations of bioelectrochemical systems, and future research efforts to improve their performance and facilitate practical applications. The mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems emphasizes the suitability of carbon nanomaterials and acidophilic bacteria for remediating soils polluted with high concentrations of heavy metals. We conclude by discussing present and future research initiatives for bioelectrochemical systems to enhance their performance and facilitate practical applications. As a result, this study can close any gaps in the development of bioelectrochemical systems and guide their practical application in remediating heavy-metal-contaminated soils.
Assuntos
Metais Pesados , Nanoestruturas , Poluentes do Solo , Carbono , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Eletrodos , BactériasRESUMO
Electrocatalytic oxidation is an appealing treatment option for emerging micropollutants in wastewater, however, the limited reactive surface area and short service lifetime of planar electrodes hinder their industrial applications. This study introduces an innovative electrochemical wastewater treatment technology that employs packed bead-electrodes (PBE) as a dynamic electrocatalytic filter on a dimensionally stable anode (DSA) acting as a current collector. By using PBE, the electroactive volume is expanded beyond the vicinity of the common planar anode to the thick porous media of PBE with a vast electrocatalytic surface area. This greatly enhances the efficiency of electrochemical degradation of micropollutants. The OV-SnO2-Sb PBE filter achieved a nearly 100 % degradation of moxifloxacin (MOX) in under 2 min of single-pass filtration, with a degradation rate over an order of magnitude higher than the conventional electrochemical oxidation processes. The generation of abundant radical species (â¢OH) and non-radical species (1O2 and O3), along with the enhanced direct oxidation, led to the outstanding performance of the charged PBE system in MOX degradation. The OV-SnO2-Sb PBE was remarkably stable, and the separation between the electroactive PBE layer and the base Ti anode allows for easy renewal of the bead-electrode materials and scaling up of the system for practical applications. Overall, our study presents a dynamic electroactive PBE that advances the electrocatalytic oxidation technology for effective control of emerging pollutants in the water environment. This technology has the potential to revolutionize electrochemical wastewater treatment and contribute to a more sustainable future environment.
RESUMO
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) represent the ultimate thickness for scaling down channel materials. They provide a tantalizing solution to push the limit of semiconductor technology nodes in the sub-1 nm range. One key challenge with 2D semiconducting TMD channel materials is to achieve large-scale batch growth on insulating substrates of single crystals with spatial homogeneity and compelling electrical properties. Recent studies have claimed the epitaxy growth of wafer-scale, single-crystal 2D TMDs on a c-plane sapphire substrate with deliberately engineered off-cut angles. It has been postulated that exposed step edges break the energy degeneracy of nucleation and thus drive the seamless stitching of mono-oriented flakes. Here we show that a more dominant factor should be considered: in particular, the interaction of 2D TMD grains with the exposed oxygen-aluminium atomic plane establishes an energy-minimized 2D TMD-sapphire configuration. Reconstructing the surfaces of c-plane sapphire substrates to only a single type of atomic plane (plane symmetry) already guarantees the single-crystal epitaxy of monolayer TMDs without the aid of step edges. Electrical results evidence the structural uniformity of the monolayers. Our findings elucidate a long-standing question that curbs the wafer-scale batch epitaxy of 2D TMD single crystals-an important step towards using 2D materials for future electronics. Experiments extended to perovskite materials also support the argument that the interaction with sapphire atomic surfaces is more dominant than step-edge docking.
RESUMO
Due to ecotoxicity, zinc (Zn) as a heavy metal from electronic waste (e-waste) has been a source of pollution to soil and water for several decades. This study proposes a solution to this serious environmental problem via a self-consumed strategy to stabilize Zn in anode residues. This unique method uses cathode residues from spent zinc-manganese oxide (Zn-Mn) batteries as a stabilized matrix via thermal treatment. More specifically, the strategy incorporates zinc metal into a chemically durable matrix comprised of a lattice of AB2O4 compounds. Results demonstrate that 5-20 wt% of anode residue were fully incorporated into the cathode residue to form a Mn3-xZnxO4 solid solution after sintering at 1300 â for 3 h. The lattice parameters of the Mn3-xZnxO4 solid solution reveal an approximately linear decreasing evolution with the addition of anode residue. To determine the occupancy of Zn in the crystal structure of the products, we used Raman and Rietveld refinement processes; the results reveal that Mn2+ in the 4a site was gradually replaced by Zn2+. We then used a prolonged toxicity leaching procedure to evaluate the Zn stabilization effect after phase transformation; this showed that the Zn leachability of sintered anode-doped cathode sample was over 40 folds lower than that of untreated anode residue. Therefore, this study presents an economical and effective strategy for mitigating the presence of heavy metal pollutants derived from e-waste.
Assuntos
Poluentes Ambientais , Metais Pesados , Zinco/química , Metais Pesados/química , Manganês , Poluentes Ambientais/análise , Poluentes Ambientais/química , Ácidos , EletrodosRESUMO
Pharmaceuticals and personal care products (PPCPs) are ubiquitous in sewage, adversely affecting ecosystems and human health. In this study, an S-scheme magnetic ZnFe2O4/ammoniated MoS2 (ZnFe2O4/A-MoS2) heterojunction as a visible-light-driven PMS activator for PPCP degradation was developed. ZnFe2O4/A-MoS2 achieves improved photocatalytic activity because the construction of S-scheme heterojunction promotes the separation of the highly reductive photogenerated electrons. The optimized photocatalyst (10%-ZnFe2O4/A-MoS2, 0.2 g/L) achieved 100% removal of 2 ppm carbamazepine (CBZ) within 2.5 min at a PMS dosage of 0.5 mM (initial pH 7.0). Mechanistic investigation revealed that the separated electrons to the ZnFe2O4 reactive center of the heterojunction facilitated PMS activation and generated SO4·- as the dominant reactive species for CBZ degradation. The system exhibited excellent practicability in various samples of actual sewage, where most sewage components negatively impacted CBZ degradation. Further, the chloride ions in high-salinity sewage could be activated to generate additional reactive chlorine species for PPCP degradation. The heterojunction possesses outstanding reusability and stability in treating various water conditions. This work provides mechanistic and practical perspectives in developing novel S-type heterojunctions for recalcitrant pollutant treatment.
Assuntos
Ecossistema , Molibdênio , Humanos , Elétrons , Esgotos , Cloretos , Preparações FarmacêuticasRESUMO
Growing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated. However, its role in the growth mechanism has not been intensively investigated. Here, we report the experimental conformation of an interfacial reconstructed (IR) layer within the substrate-epilayer gap. Such an IR layer profoundly impacts the orientations of nucleating TMDs domains and, thus, affects the materials' properties. These findings provide deeper insights into the buried interface that could have profound implications for the development of TMD-based electronics and optoelectronics.
RESUMO
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition-structure-property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
RESUMO
The disposal of wastewater sludge is one of the most challenging environmental problems for large cities. Wastewater sludge may be utilized as a feasible substitute for clay to sinter ceramics, given their similar mineralogical composition. However, the organics in sludge will be wasted, while their release during sintering will leave cracks in the ceramic products. In this research, after the thermal treatment for effective organic recovery, the thermally hydrolyzed sludge (THS) is incorporated with clay for the sintering of construction ceramics. The experimental results showed that a THS dosing ratio up to 40 % can be achieved for mixing with montmorillonite clay to make ceramic tiles. The sintered tiles (THS-40) had an intact shape and structure, and the tile performance was close to that made from single montmorillonite (THS-0), with water absorption of 0.4 % vs. 0.2 %, compressive strength of 136.8 vs. 140.7 MPa, and undetected heavy metal leaching. Further addition of THS would lead to a considerable deterioration of the quality of the tiles to a compressive strength of as low as 5.0 MPa for the THS only product (THS-100). Comparing with the tiles incorporated with raw sludge (RS-40), the THS-40 tiles had a more intact and denser structure with a 10 % improved compressive strength. Cristobalite, aluminum phosphate, mullite, and hematite dominated in the THS-born ceramics, which are typical components of ceramics, and the amount of hematite increased with the THS dosing ratio. Sintering at a high temperature of 1200 °C enabled efficient phase transformation from quartz to cristobalite and from muscovite to mullite, which ensured the toughness and compactness of the THS-born ceramic tiles.
RESUMO
Sludge pyrolysis has become an important method of sludge recycling. Stabilizing heavy metals in sludge is key to sludge recycling. Currently, research on the co-pyrolysis of sludge and industrial waste is limited. This study aims to explore the impact and mechanism of the co-pyrolysis of sludge and CaSiO3 (the main component of slag) and to achieve the concept of "treating waste with waste". To this end, we added different proportions of CaSiO3 (0%, 3%, 6%, 9%, 12%, and 15%) for the co-pyrolysis with sludge, and varied the pyrolysis temperatures (300, 400, 500, 600, and 700 °C) and retention times (15, 30, 60, and 120 min) to study heavy-metal stabilization in sludge. Consequently, the optimum dosage of CaSiO3 required for the immobilization of different heavy metals was 9% (Cu, Zn, Pb, and Cr) and 15% (Ni). The contents of Cu, Zn, Pb, Cr, and Ni in the stable state (oxidized and residual states) were 92.73%, 79.23%, 99.55%, 92.43% and 90.33% respectively. At a pyrolysis temperature of 700 °C, the steady-state proportions of Cr, Pb, and Zn were 88.12%, 90.21%, and 77.21%, respectively. At a pyrolysis temperature of 400 °C, the stable-Cu and -Ni contents were 97.21% and 99.43%, respectively. The optimal dwelling time was 15 min. The results showed that the CaSiO3 addition weakened the O-H stretching vibration peak intensity, promoted the formation of aromatic and epoxy ring structures, and enhanced the heavy-metal immobilization. Furthermore, the CaSiO3 decomposition during co-pyrolysis produced SiO2, CaO, and Ca(OH)2, which helped stabilize heavy metals.
Assuntos
Metais Pesados , Pirólise , Esgotos/química , Chumbo , Dióxido de Silício , Carvão Vegetal/química , Metais Pesados/químicaRESUMO
Effective capture of radioactive iodine is highly desirable for decontamination purposes in spent fuel reprocessing. Cu-based adsorbents with a low cost and high chemical affinity for I2 molecules act as a decent candidate for iodine elimination, but the low utilization and stability remain a significant challenge. Herein, a facile in situ confined synthesis strategy is developed to design and synthesize a copper-encapsulated flaky silicalite-1 (Cu@FSL-1) zeolite with a thickness of ≤300 nm. The maximum iodine uptake capacity of Cu@FSL-1 can reach 625 mg g-1 within 45 min, which is 2 times higher than that of a commercial silver-exchanged zeolite even after nitric acid and NOX treatment. The Cu nanoparticles (NPs) confined within the zeolite exert superior iodine adsorption and immobilization properties as well as high stability and fast adsorption kinetics endowed by the all-silica zeolite matrix. This study provides new insight into the design and controlled synthesis of zeolite-confined metal adsorbents for efficient iodine capture from gaseous radioactive streams.
Assuntos
Iodo , Neoplasias da Glândula Tireoide , Zeolitas , Humanos , Zeolitas/química , Cobre/química , Radioisótopos do Iodo , PrataRESUMO
The presence of 1,4-dioxane in various water streams poses a threat to the health of human beings. In this study, the oxidative combination of ozone with peroxymonosulfate (PMS) was for the first time used to remove 1,4-dioxane from water. Near complete abatement of 1,4-dioxane was achieved by ozone-PMS after reaction of only 15 min and the degradation kinetics was found to be positively correlated with doses of PMS and ozone. Ozone-PMS oxidation had the optimum performance at slight base pH values. Both sulfate radicals and hydroxyl radicals were generated in ozone-PMS oxidation and these radicals resulted in the degradation of 1,4-dioxane. The effects of common water constituents and real water matrices were investigated. It was found that bicarbonate ions with a concentration up to 10 mM had a slight promoting effect, while either chloride ions or natural organic matter inhibited only slightly the degradation. Meanwhile, no obvious difference in the degradation of 1,4-dioxane was found among the real water matrices and deionized water, which demonstrates that ozone-PMS oxidation has high tolerance and stability. The results from this study demonstrate that ozone-PMS may be a promising technology for the removal of 1,4-dioxane from various water matrices.
Assuntos
Ozônio , Poluentes Químicos da Água , Dioxanos , Humanos , Oxirredução , Peróxidos , Água , Poluentes Químicos da Água/análiseRESUMO
Previous studies demonstrate that the leaching of heavy metals in unreliable waste forms causes serious environmental pollution and health concerns. Thus, research is focused on identifying an effective, safe strategy for disposing of metal-laden solid waste such as lead (Pb). This study evaluated the effect of anion replacement in the structure of pyromorphite (Pb10(PO4)6Cl2, a common mineral phase for Pb sequestering) on Pb stabilization. Phosphate (PO43-) at the tetrahedral pyromorphite site was simultaneously replaced by silicate (SiO44-) and sulphate (SO42-) in a controlled thermal treatment. The lattice expanded with the incorporation of additional SiO44- and SO42-. Furthermore, the unit cell parameters of the solid solutions evolved linearly with an increase in the substitution degree (x in Pb10(SiO4)x(SO4)x(PO4)(6-2x)Cl2). This research also demonstrated that Pb distributed into amorphous in a PO43--deficient matrix, while asisite (Pb7SiO8Cl2) was formed when the matrix was dominated by SiO44- and SO42-. The leaching results showed the isomorphous substitution in the target system rendered the products less durable towards acidic attack. Moreover, the fully isomorphous-substituted product (x = 3) showed more than two orders of magnitude lower leaching resistance than the PO43--rich phase (x = 0). The lattice expansion, resulting from the isomorphous substitution, suggested that a lower dissolution energy was required in a PO43--deficient matrix. The leaching kinetics pointed to a product with a lower apparent activation energy in the leaching process. The findings of this study provide unique insight into the design and optimization of waste forms for the immobilization of heavy metals.
Assuntos
Chumbo , Metais Pesados , Metais Pesados/química , Minerais/química , Fosfatos/químicaRESUMO
The presence of unstable heavy metals in sewage sludge (SS) restricts its resource utilization. In this study, Ca(H2PO4)2 and SS were co-pyrolyzed to produce biochar, which contained relatively stable heavy metals. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and inductively coupled plasma atomic emission techniques were used to analyze the physical and chemical properties and heavy metal content of the biochar. The results indicated that co-pyrolysis of SS with Ca(H2PO4)2 resulted in the production of more stable heavy metals in the SS. The optimal co-pyrolysis conditions were a blended ratio of 15% Ca(H2PO4)2, 650 °C final temperature, 15 °C min-1, and 60 min retention time. The potential stabilization mechanisms of heavy metals were as follows: (1) organic decomposition and moisture (sourced from Ca(H2PO4)2 decomposition) evaporation resulted in greater biochar surface porosity; (2) phosphorous substances were complexed with heavy metals to form metal phosphates; and (3) the mixture reactions among inorganic substances, pyrolysis products of organics, and heavy metals resulted in the formation of highly aromatic metallic compounds. Additionally, the potential environmental risks posed by the heavy metals decreased from 65.73 (in SS) to 4.39 (in biochar derived from co-pyrolysis of SS and 15% of Ca(H2PO4)2). This study reports on a good approach for the disposal of SS and the reduction of its environmental risk.
Assuntos
Metais Pesados , Pirólise , Carvão Vegetal , Fósforo , Esgotos , TemperaturaRESUMO
Nickel-laden electroplating sludge (Ni sludge) has always been a critical concern due to its potential hazards to the environment. This study proposed a strategy to stabilize nickel (Ni) via phase transformation into stable crystal structures through ceramic sintering. The Ni sludge was collected, and then fired with two ceramic precursors (α-Fe2O3 and γ-Al2O3) within a temperature range of 700-1400 °C for 5 h. After sintering scheme, phase identification was performed on the products, showing the NiFe2O4 and NiAl2O4 spinels as predominant Ni-hosting phases respectively in α-Fe2O3 and γ-Al2O3 series. Then, the Rietveld refinement was applied to quantify weight fractions of all phases (including crystal and amorphous phases), and the quantification results showed that the weight fractions of NiFe2O4 or NiAl2O4 spinels can reach around 87.7% and 83.1%, respectively in 1200 °C sintered products of both series. The transformation ratio (TR) of Ni was calculated as 99.9% and 99.7% accordingly, showing almost complete incorporation of Ni into the spinel structures. With a prolonged leaching procedure, the Ni stabilization effect after sintering was evaluated. The Ni leachability was dramatically decreased with the development of spinel structure under sintering processes, and the Ni leached ratio from the sintered products can reach lower than 0.06% even after 20-d prolonged leaching. Through this study, a promising and quantitative method was proposed for controllable Ni stabilization of the hazardous industrial sludge via developing spinel structures in the sintered products, which may provide a feasible strategy for the treatment and beneficial utilization of heavy metal-laden solid wastes.
Assuntos
Metais Pesados , Esgotos , Óxido de Alumínio , Galvanoplastia , Óxido de Magnésio , NíquelRESUMO
The activation of persulfate by ferrous iron (Fe(II)) is of great interest to the environmental remediation community, but the reduction of ferric iron (Fe(III)) to Fe(II) is slow and the accumulation of iron sludge resulted from the precipitation of Fe(III) is a great concern. Here, molybdenum disulfide (MoS2) was studied as a co-catalyst to improve the activation of peroxymonosulfate (PMS) by Fe(III) for sulfadiazine (SDZ) degradation and different characterization technologies were used to reveal the reactive species. The results showed that a strong synergy existed between MoS2 and Fe(III); approximately 94.3% of the SDZ was removed by MoS2-Fe(III)-PMS after reaction for 30 min, while only 8.5% and 56.4% of the SDZ was removed by Fe(III)-PMS and MoS2-PMS, respectively. Both hydroxyl radicals and sulfate radicals were generated and the latter was the primary species. In addition to the radicals, singlet oxygen was found to be generated and contributed to the degradation of SDZ. The chemical probe reaction with methyl phenyl sulfoxide showed that the generation of high-valent iron-oxo species was not obvious by MoS2-Fe(III)-PMS under both acidic and neutral conditions. MoS2 had good stability. No noticeable deactivation was observed during the 1st to 5th run and no obvious oxidation of surface Mo(IV) occurred. Based on the characterization of catalyst and oxidizing species, a mechanism for the activation of PMS by MoS2-Fe(III) was proposed. The results from this study are expected to clarify the reactive species and deepen the understanding of MoS2-promoted persulfate activation by Fe(II)/Fe(III).
Assuntos
Molibdênio , Sulfadiazina , Dissulfetos , Compostos Férricos , Oxirredução , PeróxidosRESUMO
The lack of fundamental understanding of the chemistry governing elemental mercury (Hg0) immobilization over metal chalcogenides (MChals) is the key challenge impeding the interpretations of Hg0 behaviors in global cycles. This work therefore made the first endeavor toward the establishment of a roadmap capable of describing and depicting Hg0 sequestrations by various MChals. The results suggest that the binding energy between the metal cations and chalcogen anions is a proper descriptor that could predict the immobilization behaviors of Hg0 over zinc chalcogenides (ZnS and ZnSe) that exhibit an identical molecular structure, i.e., the lower the binding energy was, the higher the Hg0 sequestration performance that was obtained. The validity of this descriptor was further demonstrated over a series of MChals sharing structural similarities. A scaling relationship was thus established, which further proved the Hg0 immobilization performance of MChals was generally in reverse proportion to the above-mentioned binding energy. Although there is still a long way toward the proposal of a full roadmap that can predict and depict the Hg0 immobilization behaviors over all MChals, this work marks the first step on this road and provides guides for further studies by understanding the fundamentals governing Hg0 sequestration over MChals with structural similarities.
Assuntos
Mercúrio , MetaisRESUMO
Wastewater discharged from the dye production and consumption process has a high chemical oxygen demand, high chroma, and complex structure. In this study, a boat shaped flaky cobalt-based metal-organic framework (Co-MOF) was synthesized in aqueous solution by using a green one-step precipitation strategy. This strategy exhibited favorable efficiency for the removal of Congo red (CR). Furthermore, ZIF-67 with a rhombic dodecahedral shape was synthesized in anhydrous methanol solvent through a one-step precipitation strategy. The effects of the contact time, adsorbent dosage, initial CR concentration, and pH value on the adsorption of CR were also investigated. Results indicated that the adsorption of CR by Co-MOF and ZIF-67 fitted well with the Langmuir model and pseudo-second-order kinetic model. The maximum adsorption capacities obtained for Co-MOF and ZIF-67 with the Langmuir model were 1019.06 and 1044.58 mg/g at 25 °C, respectively. The obtained equilibrium time was less than 5 min. Moreover, Co-MOF and ZIF-67 had the same removal capacities for CR. The adsorption mechanism was attributed to the strong electrostatic and π-π stacking interactions of CR with Co-MOF and ZIF-67. Thus, the proposed method is a facile and green method to synthesize Co-MOF for the efficient removal of organic dyes from aqueous solutions.