Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
iScience ; 27(3): 109189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420588

RESUMO

Phospholipids are major components of biological membranes and play structural and regulatory roles in various biological processes. To determine the biological significance of phospholipids, the use of chemical inhibitors of phospholipid metabolism offers an effective approach; however, the availability of such compounds is limited. In this study, we performed a chemical-genetic screening using yeast and identified small molecules capable of inhibiting phosphatidylcholine (PC) biogenesis, which we designated PC inhibitors 1, 2, 3, and 4 (PCiB-1, 2, 3, and 4). Biochemical analyses indicated that PCiB-2, 3, and 4 inhibited the phosphatidylethanolamine (PE) methyltransferase activity of Cho2, whereas PCiB-1 may inhibit PE transport from mitochondria to the endoplasmic reticulum (ER). Interestingly, we found that PCiB treatment resulted in mitochondrial fragmentation, which was suppressed by expression of a dominant-negative mutant of the mitochondrial division factor Dnm1. These results provide evidence that normal PC biogenesis is important for the regulation of mitochondrial division.

2.
iScience ; 25(11): 105362, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339260

RESUMO

In yeast, ERMES, which mediates phospholipid transport between the ER and mitochondria, forms a limited number of oligomeric clusters at ER-mitochondria contact sites in a cell. Although the number of the ERMES clusters appears to be regulated to maintain proper inter-organelle phospholipid trafficking, its underlying mechanism and physiological relevance remain poorly understood. Here, we show that mitochondrial dynamics control the number of ERMES clusters. Moreover, we find that ER stress causes dissociation of the ERMES clusters independently of Ire1 and Hac1, canonical ER-stress response pathway components, leading to a delay in the phospholipid transport from the ER to mitochondria. Our biochemical and genetic analyses strongly suggest that the impaired phospholipid transport contributes to phospholipid accumulation in the ER, expanding the ER for ER stress attenuation. We thus propose that the ERMES dissociation constitutes an overlooked pathway of the ER stress response that operates in addition to the canonical Ire1/Hac1-dependent pathway.

3.
FEBS J ; 288(10): 3285-3299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283454

RESUMO

Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.


Assuntos
Proteínas de Bactérias/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Escherichia coli/genética , Membranas Intracelulares/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/deficiência , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Teste de Complementação Genética , Cinética , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transgenes
4.
FASEB J ; 34(3): 4749-4763, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32037626

RESUMO

Most phospholipids are synthesized via modification reactions of a simple phospholipid phosphatidic acid (PA). PA and its modified phospholipids travel between organelle membranes, for example, the endoplasmic reticulum (ER) and mitochondrial inner membrane, to be converted to the other phospholipids. To gain insight into mechanisms of the phospholipid biosynthetic pathways, we searched for factors whose loss affects the phospholipid synthesis using an in vitro phospholipid transport assay. Among the various factors that were tested, we noticed that a lack of Pah1, which is a phosphatidic acid phosphatase, led to severe defects in phospholipid synthesis, which was not rescued by re-expression of wild-type Pah1. These results indicated other mutations in addition to the deletion of Pah1. Interestingly, we found that stress conditions associated with the yeast transformation process triggered a disruption of the INO4 gene by insertion of the Ty1 retrotransposon in pah1∆ strains. Additionally, we noticed that loss of the diacylglycerol kinase Dgk1, which has an opposing function to Pah1, suppressed the insertional mutation of INO4. These findings suggest that normal Pah1 function is critical for the suppression of insertional mutations by retrotransposon elements.


Assuntos
Fosfatidato Fosfatase/metabolismo , Fosfolipídeos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Cromatografia em Camada Fina , Microscopia de Fluorescência , Mutação/genética , Fosfatidato Fosfatase/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA