Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894742

RESUMO

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

2.
Sci Rep ; 11(1): 8566, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883581

RESUMO

Stony coral tissue loss disease (SCTLD) was first observed in Florida in 2014 and has since spread to multiple coral reefs across the wider Caribbean. The northern section of Florida's Coral Reef has been heavily impacted by this outbreak, with some reefs experiencing as much as a 60% loss of living coral tissue area. We experimentally assessed the effectiveness of two intervention treatments on SCTLD-affected Montastraea cavernosa colonies in situ. Colonies were tagged and divided into three treatment groups: (1) chlorinated epoxy, (2) amoxicillin combined with CoreRx/Ocean Alchemists Base 2B, and (3) untreated controls. The experimental colonies were monitored periodically over 11 months to assess treatment effectiveness by tracking lesion development and overall disease status. The Base 2B plus amoxicillin treatment had a 95% success rate at healing individual disease lesions but did not necessarily prevent treated colonies from developing new lesions over time. Chlorinated epoxy treatments were not significantly different from untreated control colonies, suggesting that chlorinated epoxy treatments are an ineffective intervention technique for SCTLD. The results of this experiment expand management options during coral disease outbreaks and contribute to overall knowledge regarding coral health and disease.


Assuntos
Antozoários , Amoxicilina/uso terapêutico , Animais , Antozoários/efeitos dos fármacos , Cloro/uso terapêutico , Recifes de Corais , Compostos de Epóxi/uso terapêutico , Florida
3.
Sci Rep ; 7(1): 2609, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572677

RESUMO

Disease causes significant coral mortality worldwide; however, factors responsible for intraspecific variation in disease resistance remain unclear. We exposed fragments of eight Acropora millepora colonies (genotypes) to putatively pathogenic bacteria (Vibrio spp.). Genotypes varied from zero to >90% mortality, with bacterial challenge increasing average mortality rates 4-6 fold and shifting the microbiome in favor of stress-associated taxa. Constitutive immunity and subsequent immune and transcriptomic responses to the challenge were more prominent in high-mortality individuals, whereas low-mortality corals remained largely unaffected and maintained expression signatures of a healthier condition (i.e., did not launch a large stress response). Our results suggest that lesions appeared due to changes in the coral pathobiome (multiple bacterial species associated with disease) and general health deterioration after the biotic disturbance, rather than the direct activity of any specific pathogen. If diseases in nature arise because of weaknesses in holobiont physiology, instead of the virulence of any single etiological agent, environmental stressors compromising coral condition might play a larger role in disease outbreaks than is currently thought. To facilitate the diagnosis of compromised individuals, we developed and independently cross-validated a biomarker assay to predict mortality based on genes whose expression in asymptomatic individuals coincides with mortality rates.


Assuntos
Antozoários/genética , Genótipo , Estresse Fisiológico/genética , Vibrioses/imunologia , Vibrio/fisiologia , Animais , Antozoários/imunologia , Resistência à Doença , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Hidrobiologia , Especificidade da Espécie , Estresse Fisiológico/imunologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA