RESUMO
Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the respiratory tract. Allergic (atopic) asthma is the most common (up to 80% of cases) phenotype developing through the Th2-dependent mechanisms involving cytokines: IL-4, IL-5, IL-9, and IL-13. The genes encoding Th2-cytokines have a mosaic structure (encode exons and introns). Therefore, several mature mRNA transcripts and protein isoforms can be derived from a single mRNA precursor through alternative splicing, and they may contribute to BA pathogenesis. Analysis of the published studies and databases revealed existence of the alternative mRNA transcripts for IL-4, IL-5, and IL-13. The alternative transcripts of IL-4 and IL-5 carry open reading frames and therefore can encode functional proteins. It was shown that not only alternative mRNA transcripts exist for IL-4, but alternative protein isoforms, as well. Natural protein isoform (IL-4δ2) lacking the part encoded by exon-2 was identified. Similarly, alternative mRNA transcript with deleted exon-2 (IL-5δ2) was also identified for IL-5. In this review, we summarize current knowledge about the identified alternative mRNA transcripts and protein isoforms of Th2-cytokinins, first of all IL-4 and IL-5. We have analyzed biological properties of the alternative variants of these cytokines, their possible role in the allergic asthma pathogenesis, and considered their diagnostic and therapeutic potential.
Assuntos
Asma , Citocinas , Humanos , Citocinas/genética , Citocinas/metabolismo , Processamento Alternativo , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-5/genética , Interleucina-5/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Asma/genética , Asma/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th2/metabolismo , Células Th2/patologiaRESUMO
Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Ácidos Nucleicos/metabolismo , Transporte Biológico , Terapia GenéticaRESUMO
Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the airways. The majority of patients with mild to moderate BA develop Th2-biased eosinophilic pulmonary inflammation and respond well to corticosteroid treatment. However up to 10% of BA patients develop severe pathology, which is associated with neutrophilic inflammation and resistant to conventional corticosteroid therapy. Contrary to eosinophil-predominant airway inflammation neutrophilic BA is developed through Th1- and Th17-immune responses. However, the etiology of corticoid insensitive neutrophilic BA is still remains unclear. Therefore, in the current study we developed a mouse model of BA with predominant neutrophilic rather than eosinophilic pulmonary inflammation. BALB/c mice were immunized with the mixture of the ovalbumin allergen and Freund's adjuvant, followed by aerosol challenge with the same allergen mixed with E. coli lipopolysaccharide. As a result, mice developed the main BA manifestations: production of allergen specific IgE, development of airway hyperreactivity, airway remodeling and pulmonary neutrophilic inflammation. Moreover, this pathology developed through Th1- and Th17-dependent mechanisms and mice with induced neutrophilic BA phenotype responded poorly to dexamethasone treatment, that coincide to clinical observations. The established mouse model could be useful both for studying the pathogenesis and for testing novel approaches to control neutrophilic BA.
Assuntos
Asma , Hiper-Reatividade Brônquica , Pneumonia , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos , Animais , Hiper-Reatividade Brônquica/patologia , Modelos Animais de Doenças , Escherichia coli , Humanos , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Ovalbumina , Pneumonia/patologia , Esteroides/uso terapêuticoRESUMO
Bronchial asthma is a heterogeneous chronic inflammatory disease of airways. The studies of molecular and cellular mechanisms of bronchial asthma have established that a wide range of immune (T and B cells, eosinophils, neutrophils, macrophages, etc.) and structural (epithelial and endothelial) cells are involved in its pathogenesis. These cells are activated in response to external stimuli (bacteria, viruses, allergens, and other pollutants) and produce pro-inflammatory factors (cytokines, chemokines, metalloproteinases, etc.), which ultimately leads to the initiation of pathological processes in the lungs. Genes encoding transcription factors of the STAT family (signal transducer and activator of transcription), that includes seven representatives, are involved in the cell activation. Recent studies have shown that the transcription factor STAT3 plays an important role in the activation of the abovementioned cells, thus contributing to the development of asthma. In animal studies, selective inhibition of STAT3 significantly reduces the severity of lung inflammation, which indicates its potential as a therapeutic target. In this review, we describe the mechanisms of STAT3 activation and its role in polarization of Th2/Th17 cells and M2 macrophages, as well as in the dysfunction of endothelial cells, which ultimately leads to development of bronchial asthma symptoms, such as infiltration of neutrophils and eosinophils into the lungs, bronchial hyperreactivity, and the respiratory tract remodeling.
Assuntos
Asma/imunologia , Leucócitos/imunologia , Pulmão/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Asma/patologia , Humanos , Leucócitos/patologia , Pulmão/patologiaRESUMO
Respiratory syncytial virus (RSV) causes severe pathology of the lower respiratory tract in infants, immunocompromised people, and elderly. Despite decades of research, there is no licensed vaccine against RSV, and many therapeutic drugs are still under development. Detailed understanding of molecular and cellular mechanisms of the RSV infection pathology can accelerate the development of efficacious treatment. Current studies on the RSV pathogenesis are based on the analysis of biopsies from the infected patients; however deeper understanding of molecular and cellular mechanisms of the RSV pathology could be achieved using animal models. Mice are the most often used model for RSV infection because they exhibit manifestations similar to those observed in humans (bronchial obstruction, mucous hypersecretion, and pulmonary inflammation mediated by lymphocytes, macrophages, and neutrophils). Additionally, the use of mice is economically feasible, and many molecular tools are available for studying RSV infection pathogenesis at the molecular and cellular levels. This review summarizes new data on the pathogenesis of RSV infection obtained in mouse models, which demonstrated the role of T cells in both the antiviral defense and the development of lung immunopathology. T cells not only eliminate the infected cells, but also produce significant amounts of the proinflammatory cytokines TNFα and IFNγ. Recently, a new subset of tissue-resident memory T cells (TRM) was identified that provide a strong antiviral defense without induction of lung immunopathology. These cells accumulate in the lungs after local rather than systemic administration of RSV antigens, which suggests new approaches to vaccination. The studies in mouse models have revealed a minor role of interferons in the anti-RSV protection, as RSV possesses mechanisms to escape the antiviral action of type I and III interferons, which may explain the low efficacy of interferon-containing drugs. Using knockout mice, a significant breakthrough has been achieved in understanding the role of many pro-inflammatory cytokines in lung immunopathology. It was found that in addition to TNFα and IFNγ, the cytokines IL-4, IL-5, IL-13, IL-17A, IL-33, and TSLP mediate the major manifestations of the RSV pathogenesis, such as bronchial obstruction, mucus hyperproduction, and lung infiltration by pro-inflammatory cells, while IL-6, IL-10, and IL-27 exhibit the anti-inflammatory effect. Despite significant differences between the mouse and human immune systems, mouse models have made a significant contribution to the understanding of molecular and cellular mechanisms of the pathology of human RSV infection.
Assuntos
Modelos Animais de Doenças , Pulmão/patologia , Infecções por Vírus Respiratório Sincicial/etiologia , Animais , Citocinas/imunologia , Humanos , Inflamação , Pulmão/imunologia , Camundongos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Linfócitos T/imunologiaRESUMO
The genotoxicity of cationic lipopeptide nanoparticles (cLPNPs) was evaluated in vivo and in vitro comet assay and the in vivo chromosome aberrations test. In vitro comet assay, human blood cells were exposed to cLPNPs at the concentration of 2.5, 5, 10, 20, 40 and 100 µg/mL. Significant DNA damage was observed after 1 h exposure, but no effects were detected after 3 h. In vivo, cLPNPs were administered in single or five daily injection doses at 8, 20 and 40 mg/kg of body weight by subcutaneous injection to male mice. The cLPNPs caused DNA damage in the liver, lung and kidney, but not in the spleen. The kidney was more prone to genotoxic effects that persisted from 24 h to 14d after a single injection of cLPNPs. No statistically significant increase in the percentage of cells with chromosomal aberrations above the vehicle control was observed in mice bone marrow after a single or repeated injection of cLPNPs. In summary, cLPNPs shown to be genotoxic both in vivo and in vitro. The results suggest the importance of the use of highly sensitive methods, such as the comet assay, in order to determine the full genotoxic potential of nanoparticles.
Assuntos
Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Lipopeptídeos/toxicidade , Nanopartículas/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Humanos , Injeções Subcutâneas , Rim/efeitos dos fármacos , Rim/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Lipopeptídeos/química , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Nanopartículas/químicaRESUMO
Respiratory syncytial virus (RSV) is one of the most common viral pathogens. It is especially dangerous for newborns and young children. In some cases it could lead to severe bronchiolitis, pneumonia with hospitalization or even a lethal outcome. Despite decades of investigation of RSV biology, effective and safe therapeutics are still under development. Certain natural peptides have been found to exhibit antiviral activity against respiratory viruses, but their implementation is limited by low stability in biological media. One of the current approaches to enhance the peptide therapeutic opportunities is chemical synthesis of peptide dendrimers with hyperbranched structures. Taking into account the recent data of bioactive cationic and helical regions of natural peptides and the structure features of nucleolin identified as an RSV cellular receptor, the main goal of this study was to design relatively short linear and dendrimeric cationic peptides and to test their antiviral activity against RSV. As a result 3 linear cationic peptides and 4 peptide dendrimers were synthesized and compared with known LL-37 (cathelicidin family) and anti-F0 monoclonal antibodies in terms of cytotoxicity and antiviral activity. Their affinity to the supposed molecular target - nucleolin (C23) - was estimated in silico by molecular docking analysis. Four synthesized peptides demonstrated a cytotoxic effect, two of them were even more cytotoxic than LL-37, which could be explained by a combination of a high amount of positive charge and amphipathicity. Contrariwise, non-hydrophobic dendrimer peptides did not exhibit cytotoxicity in mammalian cells in the studied concentration range. Two of the seven synthesized peptides, LTP (dendrimer) and SA-35 (linear), used in this study had a stronger antiviral effect than natural peptide LL-37, and three others showed slightly lower activity than anti-F0 monoclonal antibodies. The data obtained in this study suggest that evenly distributed positive charge, and low or medium amphipathicity play a key role in the antiviral activity of the studied peptides. Moreover, the calculated free energy values of the peptide/nucleolin complex for the most active peptides supported the idea that the peptide ability of nucleolin interaction promotes the anti-RSV properties of the molecules.
Assuntos
Antivirais/farmacologia , Dendrímeros/farmacologia , Desenho de Fármacos , Peptídeos/farmacologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Macaca mulatta , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Propriedades de SuperfícieRESUMO
Chronic inflammation drives the progression of colorectal cancer (CRC). Increased expression of interleukin (IL)-17A is associated with poor prognosis, and IL-17A blockade curbs tumor progression in preclinical models of CRC. Here we examined the impact of IL-1 signaling, a key regulator of the IL-17 pathway, in different cell types within the CRC microenvironment. Genetic deletion of the IL-1 receptor (IL-1R1) in epithelial cells alleviated tumorigenesis in the APC model of CRC, demonstrating a cell-autonomous role for IL-1 signaling in early tumor seed outgrowth. T cell specific ablation of IL-1R1 decreased tumor-elicited inflammation dependent on IL-17 and IL-22, thereby reducing CRC progression. The pro-tumorigenic roles of IL-1 were counteracted by its effects on myeloid cells, particularly neutrophils, where IL-1R1 ablation resulted in bacterial invasion into tumors, heightened inflammation and aggressive CRC progression. Thus, IL-1 signaling elicits cell-type-specific responses, which, in aggregate, set the inflammatory tone of the tumor microenvironment and determine the propensity for disease progression.
Assuntos
Neoplasias Colorretais/imunologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Neutrófilos/imunologia , Salmonelose Animal/imunologia , Salmonella/imunologia , Animais , Carcinogênese , Células Cultivadas , Humanos , Interleucina-1/genética , Interleucina-1/imunologia , Interleucinas/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/ultraestrutura , Especificidade de Órgãos , Receptores de Interleucina-1/genética , Transdução de Sinais , Microambiente Tumoral , Interleucina 22RESUMO
One of the urgent problems of gene therapy is the search for effective transfection methods. Synthetic cationic peptides (CPs) are considered to be one of the most promising approaches for intracellular transport of oligonucleotides. Almost unlimited possibilities of the architectural design of CPs (linear and cyclic structures with a variation of chirality as well as dendrimers) make CPs an effective tunable carrier in this field. Cationic peptide dendrimers (PDs), as a relatively new direction, have significant advantages as gene delivery vehicles by virtue of non-natural ε-amide bonds that significantly increase their resistance to proteolysis. Moreover they also possess much lower cytotoxicity than linear peptides, which is crucial for the potential clinical application of CPs. In a further development of oligonucleotide delivery systems, we have synthesized a collection of 14 CPs, including linear peptides, lipopeptides and PDs. Their activity was evaluated by transfection of 293T cells with plasmids containing reporter genes encoding luciferase or a green fluorescent protein. The obtained results demonstrated that the greatest activity was exhibited by PDs, particularly LTP, an arginine-rich peptide dendrimer, which possesses low cytotoxic and hemolytic activity. The peptide exhibited high cell-penetrating activity, confirmed by fast dissipation of the membrane potential of cells probed by dis-C3-(5). The quantitative analysis of labelled LTP in tissue samples of mice revealed that the Cy5-LTP/siRNA complexes have a reasonable tropism to lung tissues.
Assuntos
DNA/química , DNA/genética , Dendrímeros/química , Portadores de Fármacos/química , Peptídeos/química , Transfecção , Sequência de Aminoácidos , Animais , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética , Peptídeos/farmacologia , Plasmídeos/genética , Distribuição TecidualRESUMO
Asthma exacerbations are caused primarily by viral infections. Antisense and small interfering RNA (siRNA) technologies have gained attention as potential antiasthma and antiviral approaches. In this study we analyzed whether gene silencing of interleukin (IL)-4 expression and respiratory syncytial virus (RSV) replication by RNA interference is able to suppress allergen- and virus-induced responses in a mouse model of virus-induced asthma exacerbation. Knockdown efficacy of IL-4 siRNA molecules was analyzed in the human HEK293T cell line by cotransfection of six different siRNAs with a plasmid carrying mouse IL-4. The most potent siRNA was then used in a mouse model of RSV-induced asthma exacerbation. BALB/c mice were sensitized intraperitoneally with ovalbumin (OVA) and then infected 12 days later intranasally with RSV Long strain (1×10(6) TCID50/mouse), followed 1 day later by intranasal challenge with OVA for 3 days. Mice were pretreated intranasally three times with either siRNA to IL-4 or GFP control, 2 days before, and on the first two OVA challenge days. siRNAs to RSV or rhinovirus control were inoculated intranasally once, 3 hr before RSV infection. Combined anti-IL-4 and anti-RSV siRNAs were able to significantly reduce total cell counts and eosinophilia in bronchoalveolar lavage fluid, development of airway hyperresponsiveness, and airway inflammation and to downregulate IL-4 mRNA expression and RSV viral RNA, but to upregulate IFN-γ levels in lung tissues. We conclude that anti-helper T cells type 2 and antiviral siRNAs may constitute a new therapeutic approach for treatment of virus induced asthma exacerbations.