Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
STAR Protoc ; 3(4): 101846, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595930

RESUMO

Mouse optogenetic functional magnetic resonance imaging (opto-fMRI) is critical for linking genes and functions and for mapping cell-type-specific neural circuits in the whole brain. Herein, we describe how opto-fMRI images can be reliably obtained in anesthetized mice with minimal distortions at ultrahigh magnetic fields. The protocol includes surgical and anesthesia procedures, animal cradle modification, animal preparation and setup, animal physiology maintenance, and pilot fMRI scanning. This protocol will enable reproducible mouse opto-fMRI experiments. For complete details on the use and execution of this protocol, please refer to Jung et al. (2021),1 Jung et al. (2022),2 and Moon et al. (2021).3.


Assuntos
Imageamento por Ressonância Magnética , Optogenética , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Campos Magnéticos
2.
Cell Rep ; 34(8): 108780, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626347

RESUMO

CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.


Assuntos
Comportamento Animal , Cognição , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Neocórtex/enzimologia , Neurônios/metabolismo , Núcleos Ventrais do Tálamo/metabolismo , Vibrissas/inervação , Animais , Apoptose , Mapeamento Encefálico , Proteínas de Ligação a DNA/genética , Feminino , Genótipo , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/patologia , Neocórtex/fisiopatologia , Neurônios/patologia , Fenótipo , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiopatologia , Comportamento Social , Transmissão Sináptica , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/fisiopatologia
3.
Neuroimage ; 226: 117542, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186719

RESUMO

The functional characteristics of the mouse visual system have not previously been well explored using fMRI. In this research, we examined 9.4 T BOLD fMRI responses to visual stimuli of varying pulse durations (1 - 50 ms) and temporal frequencies (1 - 10 Hz) under ketamine and xylazine anesthesia, and compared fMRI responses of anesthetized and awake mice. Under anesthesia, significant positive BOLD responses were detected bilaterally in the major structures of the visual pathways, including the dorsal lateral geniculate nuclei, superior colliculus, lateral posterior nucleus of thalamus, primary visual area, and higher-order visual area. BOLD responses increased slightly with pulse duration, were maximal at 3 - 5 Hz stimulation, and significantly decreased at 10 Hz, which were all consistent with previous neurophysiological findings. When the mice were awake, the BOLD fMRI response was faster in all active regions and stronger in the subcortical areas compared with the anesthesia condition. In the V1, the BOLD response was biphasic for 5 Hz stimulation and negative for 10 Hz stimulation under wakefulness, whereas prolonged positive BOLD responses were observed at both frequencies under anesthesia. Unexpected activation was detected in the extrastriate postrhinal area and non-visual subiculum complex under anesthesia, but not under wakefulness. Widespread positive BOLD activity under anesthesia likely results from the disinhibition and sensitization of excitatory neurons induced by ketamine. Overall, fMRI can be a viable tool for mapping brain-wide functional networks.


Assuntos
Anestésicos Dissociativos/farmacologia , Encéfalo/diagnóstico por imagem , Ketamina/farmacologia , Vias Visuais/diagnóstico por imagem , Vigília/fisiologia , Anestesia , Animais , Encéfalo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem , Córtex Visual/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos
4.
NMR Biomed ; 33(7): e4311, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297409

RESUMO

Mouse functional MRI (fMRI) has been of great interest due to the abundance of transgenic models. Due to a mouse's small size, spontaneous breathing has often been used. Because the vascular physiology affecting fMRI might not be controlled normally, its effects on functional responses were investigated with optical intrinsic signal (OIS) imaging and 9.4 T BOLD fMRI. Three conditions were tested in C57BL/6 mice: spontaneous breathing under ketamine and xylazine anesthesia (KX), mechanical ventilation under KX, and mechanical ventilation under isoflurane. Spontaneous breathing under KX induced an average pCO2 of 83 mmHg, whereas a mechanical ventilation condition achieved a pCO2 of 37-41 mmHg within a physiological range. The baseline diameter of arterial and venous vessels was only 7%-9% larger with spontaneous breathing than with mechanical ventilation under KX, but it was much smaller than that in normocapnic isoflurane-anesthetized mice. Three major functional studies were performed. First, CBV-weighted OIS and arterial dilations to 4-second forepaw stimulation were rapid and larger at normocapnia than hypercapnia under KX, but very small under isoflurane. Second, CBV-weighted OIS and arterial dilations by vasodilator acetazolamide were measured for investigating vascular reactivity and were larger in the normocapnic condition than in the hypercapnic condition under KX. Third, evoked OIS and BOLD fMRI responses in the contralateral mouse somatosensory cortex to 20-second forepaw stimulation were faster and larger in the mechanical ventilation than spontaneous breathing. BOLD fMRI peaked at the end of the 20-second stimulation under hypercapnic spontaneous breathing, and at ~9 seconds under mechanical ventilation. The peak amplitude of BOLD fMRI was 2.2% at hypercapnia and ~3.4% at normocapnia. Overall, spontaneous breathing induces sluggish reduced hemodynamic and fMRI responses, but it is still viable for KX anesthesia due to its simplicity, noninvasiveness, and well-localized BOLD activity in the somatosensory cortex.


Assuntos
Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética , Oxigênio/sangue , Respiração Artificial , Respiração , Córtex Somatossensorial/diagnóstico por imagem , Acetazolamida/farmacologia , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hipercapnia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia
5.
Neuroimage ; 195: 203-214, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30946950

RESUMO

Forepaw somatosensory stimulation induces neural activities in relay thalamic nuclei, the primary somatosensory cortex of forelimb (S1FL), and the secondary somatosensory cortex (S2). However, rodent fMRI studies of somatosensory stimulation have commonly reported BOLD changes only in S1FL, which may be due to side effects of anesthetics and/or the low sensitivity in the thalamus. Thus, we have obtained mouse BOLD fMRI under newly-adopted ketamine-xylazine anesthesia. High-resolution BOLD fMRI obtained with same imaging parameters at 9.4T versus 15.2T shows the improvement of functional detectability by ≥ 2 times at 15.2T due to higher signal intensity and larger BOLD response. The fMRI responses at 15.2T were robustly observed at well-known somatosensory networks including thalamus. Second, echo-time-dependent BOLD signals are dominant based on multi-echo fMRI data. A ratio of BOLD responses in S1FL to thalamus is ∼2, which is not related to different baseline T2∗ or different cerebral blood volume. Third, group-averaged 15.2T BOLD maps show activities in S1FL, S2, motor cortices, and thalamic nuclei, which agree well with neural tracing network data from the Allen Institute, demonstrating that fMRI detects entire somatosensory networks. Our data suggest that ultrahigh field fMRI provides a unique window into understanding functional networks in normal and transgenic mouse models noninvasively.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Núcleos Talâmicos/fisiologia , Anestésicos/farmacologia , Animais , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/fisiologia , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/efeitos dos fármacos , Xilazina/farmacologia
6.
Neuroimage ; 177: 30-44, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730495

RESUMO

Mouse fMRI is critically useful to investigate functions of mouse models. Until now, the somatosensory-evoked responses in anesthetized mice are often widespread and inconsistent across reports. Here, we adopted a ketamine and xylazine mixture for mouse fMRI, which is relatively new anesthetics in fMRI experiments. Forepaw stimulation frequency was optimized using cerebral blood volume (CBV)-weighted optical imaging (n = 11) and blood-oxygenation-level dependent (BOLD) fMRI with a gradient-echo time of 16 ms at 9.4 T, and 4 Hz stimulation with 0.5 ms and 0.5 mA pulses induced the highest hemodynamic response. For 20-s 4-Hz unilateral forepaw stimulation, localized BOLD activity was consistently found in the contralateral primary forelimb somatosensory cortex (S1FL), while no significant change was observed in the ipsilateral S1FL. The mean magnitude was 1.44 ±â€¯0.20% SEM (n = 9) in the contralateral S1FL and 0.69 ±â€¯0.10% in the contralateral thalamus. The variability of evoked fMRI responses across sessions was investigated by comparing with resting state fMRI (rsfMRI) functional connectivity (FC). Evoked responses in S1FL were correlated positively with rsfMRI FC between bilateral S1FL (r = 0.63 to 0.69) and negatively with FC between S1FL and the anterior cingulate cortex (r = -0.50 to -0.57), suggesting that rsfMRI FC is a good index of the evoked fMRI response and anesthetized animal condition. Finally, three weekly fMRI scans were performed in 5 mice, and localized activity was reproducibly observed in S1FL, with a success rate of 70-95%. In summary, our developed fMRI protocol can be used for mapping functions of mouse models.


Assuntos
Anestésicos/administração & dosagem , Neuroimagem Funcional/métodos , Ketamina/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/fisiologia , Xilazina/administração & dosagem , Animais , Circulação Cerebrovascular/fisiologia , Estimulação Elétrica , Membro Anterior/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Imagem Óptica , Córtex Somatossensorial/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA