Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Physiol Meas ; 45(2)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38306663

RESUMO

Objective. To develop analytical formulas which can serve as quantitative guidelines for the selection of the sampling rate for the electrocardiogram (ECG) required to calculate heart rate (HR) and heart rate variability (HRV) with a desired level of accuracy.Approach. We developed analytical formulas which relate the ECG sampling rate to conservative bounds on HR and HRV errors: (i) one relating HR and sampling rate to a HR error bound and (ii) the others relating sampling rate to HRV error bounds (in terms of root-mean-square of successive differences (RMSSD) and standard deviation of normal sinus beats (SDNN)). We validated the formulas using experimental data collected from 58 young healthy volunteers which encompass a wide HR and HRV ranges through strenuous exercise.Main results. The results strongly supported the validity of the analytical formulas as well as their tightness. The formulas can be used to (i) predict an upper bound of inaccuracy in HR and HRV for a given sampling rate in conjunction with HR and HRV as well as to (ii) determine a sampling rate to achieve a desired accuracy requirement at a given HR or HRV (or its range).Significance. HR and its variability (HRV) derived from the ECG have been widely utilized in a wide range of research in physiology and psychophysiology. However, there is no established guideline for the selection of the sampling rate for the ECG required to calculate HR and HRV with a desired level of accuracy. Hence, the analytical formulas may guide in selecting sampling rates for the ECG tailored to various applications of HR and HRV.


Assuntos
Eletrocardiografia , Exercício Físico , Humanos , Frequência Cardíaca/fisiologia , Eletrocardiografia/métodos
2.
Sports Biomech ; : 1-14, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555347

RESUMO

High-velocity actions are central to clinical and athletic performance, with jumping used to assess outcomes in sports medicine. Ground reaction force (GRF)-based methods are the standard for computing jump characteristics, but require mass estimation and GRF integration, potentially resulting in mass errors which influence outcomes. This study investigated how simulated mass errors influenced the centre of mass (CoM) trajectory during a countermovement jump. The mass was estimated from the static GRF, and simulated errors were added or subtracted to the mass. The CoM trajectory with simulated mass errors was computed using the GRF-based method to investigate mass mis-estimation's influence on jump height. A regression model indicated that, for a 1 kg mass change, there was a 7.7 cm jump height change, and the jump height differed by 11.5 ± 0.4 cm from the maximum to minimum error. A 2-way ANOVA identified significant height differences between the starting position, and landing, or final position with mass errors of ± 0.2 or ± 0.4 kg. These results reveal that small mass errors may produce inaccurate conclusions regarding performance changes, and that errors may propagate throughout the jump trajectory. Caution may be necessary when using GRF-based methods to compute jump height as a power proxy.

3.
Sports Biomech ; : 1-15, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36948644

RESUMO

Athletic shoes that induce dorsiflexion in standing can improve jump height compared to traditional athletic shoes that induce plantarflexion, but it is unknown if dorsiflexion shoes (DF) also affect landing biomechanics associated with lower extremity injury risk. Thus, the purpose of this study was to investigate if DF adversely affect landing mechanics related to patellofemoral pain and anterior cruciate ligament injury risk compared to neutral (NT) and plantarflexion (PF) shoes. Sixteen females (21.65 ± 4.7 years, 63.69 ± 14.3 kg, 1.60 ± 0.05 m) performed three maximum vertical countermovement jumps in DF (-1.5°), NT (0°) and PF (8°) shoes as 3D kinetics and kinematics were recorded. One-way repeated-measures ANOVAs revealed peak vertical ground reaction force, knee abduction moment and total energy absorption were similar between conditions. At the knee, peak flexion and joint displacement were lower in DF and NT, while relative energy absorption was greater in PF (all p < .01). Conversely, relative ankle energy absorption was greater in DF and NT compared to PF (p < .01). Both DF and NT induce landing patterns that may increase strain on passive structures in the knee, emphasising the need for landing mechanics to be considered when testing footwear as gains in performance could come at the cost of injury risk.

4.
Knee ; 41: 115-123, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657209

RESUMO

BACKGROUND: The knee adduction moment, a biomechanical risk factor of knee osteoarthritis, is typically measured in a gait laboratory with expensive equipment and inverse dynamics modeling software. We aimed to develop a framework for a portable knee adduction moment estimation for healthy female individuals using deep learning neural networks and custom instrumented insole and evaluated its accuracy compared to the standard inverse dynamics approach. METHODS: Feed-forward, convolutional, and recurrent neural networks were applied to the data extracted from five piezo-resistive force sensors attached to the insole of a shoe. RESULTS: All models predicted knee adduction moment variables during walking with high correlation coefficients, r > 0.72, and low root mean squared errors (RMSE), ranging from 0.5% to 1.2%. The convolutional neural network is the most accurate predictor of average knee adduction moment (r = 0.96; RMSE = 0.5%) followed by the recurrent and feed-forward neural networks. CONCLUSION: These findings and the methods presented in the current study are expected to facilitate a cost-effective clinical analysis of knee adduction moment for healthy female individuals and to facilitate future research on prediction of other biomechanical risk factors using similar methods.


Assuntos
Aprendizado Profundo , Osteoartrite do Joelho , Humanos , Feminino , Sapatos , Fenômenos Biomecânicos , Articulação do Joelho , Marcha , Caminhada , Redes Neurais de Computação
5.
Front Hum Neurosci ; 17: 1280356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178993

RESUMO

Developmental Coordination Disorder (DCD), also known as Dyspraxia, is characterized by movement difficulties in individuals without discernible neurological disorders or identifiable medical conditions. Previous studies from various countries have highlighted disparities in anthropometric, physical activity, and psychological characteristics between children diagnosed with DCD and their typically developing (TD) peers. These differences are influenced by sociocultural norms and geographical locations. However, little attention has been given to scrutinizing analogous differences in adult populations, particularly within Republic of Korea. This study aims to address this knowledge gap by employing a battery of questionnaires to assess anthropometric, physical activity, and psychological traits in a cohort of 377 Korean adults, encompassing those with DCD (n = 54) alongside TD counterparts (n = 323). It was hypothesized that Korean adults with DCD would exhibit higher body mass index and lower ratings in physical activity and psychological characteristics than TD, consistent with the previous studies performed in other countries on children. The results showed no statistically significant differences between the DCD and TD groups in anthropometric characteristics such as weight (kg), height (cm), and body mass index. The prevalence of walking and biking for daily commuting in daily routines within Korean society might have contributed to the mitigation of anthropometric among individuals with/without DCD. Statistically significant differences were found in physical activity levels at work and recreational settings, as shown in physical activity scores and duration. The DCD group also displayed lower scores across several psychological characteristics, including exercise adherence, intrinsic motivation, self-efficacy, physical self-concept, exercise expectations, and intrinsic regulation. These findings underscore the necessity of incorporating sociocultural dynamics when investigating anthropometric, physical activity, and psychological characteristics in adults with DCD. Their perceived difficulties in fine motor skills were also significantly poor than TD. Future research studies are warranted to elucidate the underlying mechanisms driving the observed patterns in this study, thus contributing to a more nuanced comprehension of how DCD manifests within specific sociocultural contexts.

6.
J Neurophysiol ; 126(5): 1698-1709, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644124

RESUMO

We investigated the role of task constraints on interpersonal interactions. Twenty-one pairs of coworkers performed a finger force production task on force sensors placed at two ends of a seesaw-like apparatus and matched a combined target force of 20 N for 23 s over 10 trials. There were two experimental conditions: 1) FIXED: the seesaw apparatus was mechanically held in place so that the only task constraint was to match the 20 N resultant force, and 2) MOVING: the lever in the apparatus was allowed to rotate freely around its fulcrum, acting like a seesaw, so an additional task constraint to (implicitly) balance the resultant moment was added. We hypothesized that the additional task constraint of moment stabilization imposed on the MOVING condition would deteriorate task performance compared with the FIXED condition; however, this was rejected, as the performance of the force matching task was similar between two conditions. We also hypothesized that the central nervous systems (CNSs) would employ distinct coworking strategies or interpersonal motor synergy (IPMS) between conditions to satisfy different task constraints, which was supported by our results. Negative covariance between coworker's forces in the FIXED condition suggested a force stabilization strategy, whereas positive covariance in the MOVING condition suggested a moment stabilization strategy, implying that independent CNSs adopt distinct IPMSs depending on task constraints. We speculate that in the absence of a central neural controller, shared visual and mechanical connections between coworkers may suffice to trigger modulations in the cerebellum of each CNS to satisfy competing task constraints.NEW & NOTEWORTHY To the best of our knowledge, this is the first study to investigate the coworking behavior or IPMS when an additional task constraint is imposed. Our proposed analytical framework quantifies IPMS and allows for investigating variability in offline (i.e., across multiple repetitions) and online (i.e., across time) control, which is novel in coworking research. Understanding variability while performing a task is essential, as repeating a task is not always possible, as in therapeutic contexts.


Assuntos
Comportamento Cooperativo , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Dedos , Humanos , Masculino , Interface Usuário-Computador , Adulto Jovem
7.
J Sport Rehabil ; 30(8): 1178-1186, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525452

RESUMO

CONTEXT: Understanding if roller massage prior to a run can mitigate fatigue-related decrements in muscle force production during prolonged running is important because of the association between fatigue and running-related injury. OBJECTIVE: The authors investigated whether a bout of roller massage prior to running would (1) mitigate fatigue-related increases in vertical average load rate and free moment of the ground reaction force of running and (2) mitigate decreases in maximal countermovement jump height. DESIGN: Repeated-measures study. SETTING: Laboratory. PARTICIPANTS: A total of 14 recreational endurance athletes (11 men and 3 women) volunteered for the study. INTERVENTIONS: A 12.5-minute foam roller protocol for the lower extremities and a fatiguing 30-minute treadmill run. MAIN OUTCOME MEASURES: Vertical average load rate, free moment, and maximal jump height before (PRE) and after (POST) the fatiguing treadmill run on separate experimental days: once where participants sat quietly prior to the fatiguing run (REST) and another where the foam roller protocol was performed prior to the run (ROLL). RESULTS: A 2-way multiple analysis of variance found no significant differences in vertical average load rate, free moment, and jump height between PRE/POST times in both REST/ROLL conditions. CONCLUSIONS: The authors concluded that recreational endurance athletes maintain running mechanics and jump performance after a fatiguing run regardless of prerun roller massage and may not rely on prerun roller massage as a form of injury prevention.


Assuntos
Corrida , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Marcha , Humanos , Extremidade Inferior , Masculino , Massagem
8.
IEEE Trans Biomed Eng ; 68(9): 2741-2751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476263

RESUMO

OBJECTIVE: Energy-storage-and-return (ESAR) prosthetic feet have improved amputee mobility due to their efficient conversion of strain energy to mechanical work. However, this efficiency is typically achieved using light-weight, high-stiffness materials, which generate high-frequency vibrations that are potentially injurious if transmitted to biological tissues. To reduce the vibration which may cause cumulative tissue trauma, high-frequency vibration suppression by piezoelectric shunt damping patches on a commercial ESAR foot was evaluated. METHODS: Two patches with either passive or active shunt circuits were placed on the foot to investigate vibration suppression during experimental tests where a plastic hammer was used to hit a clamped ESAR foot on the free end. Prosthesis bending moments at each modal frequency were obtained by finite element methods to identify piezoelectric patch placement. RESULTS: Both shunt circuits decreased vibration amplitudes at specific modes better than the no shunt case, but also increased the amplitude at specific frequencies. The vibration suppression performance of the active shunt circuit deteriorated at the second mode, while the vibration suppression performance of the passive shunt circuit deteriorated at all frequencies above the third mode. CONCLUSIONS: These results indicate piezoelectric shunt patches may be a viable strategy for decreasing vibrations of an ESAR foot, with active methods more efficient at suppressing high-frequency vibrations. Additional research is necessary to fine-tune the method for maximal vibration suppression. SIGNIFICANCE: Overall, this study indicates that high-frequency vibration suppression is possible using piezoelectric patches, possibly decreasing the cumulative tissue damage that may occur with repetitive exposure to vibration.


Assuntos
Amputados , Membros Artificiais , , Humanos , Vibração , Caminhada
9.
Sci Rep ; 11(1): 2694, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514759

RESUMO

The purpose of this study was to investigate how the ball position along the mediolateral (M-L) direction of a golfer causes a chain effect in the ground reaction force, body segment and joint angles, and whole-body centre of mass during the golf swing. Twenty professional golfers were asked to complete five straight shots for each 5 different ball positions along M-L: 4.27 cm (ball diameter), 2.14 cm (ball radius), 0 cm (reference position at preferred ball position), - 2.14 cm, and - 4.27 cm, while their ground reaction force and body segment motions were captured. The dependant variables were calculated at 14 swing events from address to impact, and the differences between the ball positions were evaluated using Statistical Parametric Mapping. The left-sided ball positions at address showed a greater weight distribution on the left foot with a more open shoulder angle compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. These trends disappeared during the backswing and reappeared during the downswing. The whole-body centre of mass was also located towards the target for the left-sided ball positions throughout the golf swing compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. We have concluded that initial ball position at address can cause a series of chain effects throughout the golf swing.

10.
Sci Rep ; 10(1): 22197, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335153

RESUMO

Professional dancers demonstrate an amazing ability to control their balance. However, little is known about how they coordinate their body segments for such superior control. In this study, we investigated how dancers coordinate body segments when a physical perturbation is given to their body. A custom-made machine was used to provide a short pulling impulse at the waist in the anterior direction to ten dancers and ten non-dancers. We used Uncontrolled Manifold analysis to quantify the variability in the task-relevant space and task-irrelevant space within the multi-dimensional space made up of individual segments' centers of mass with a velocity adjustment. The dancers demonstrated greater utilization of redundant degrees of freedom (DoFs) supported by the greater task-irrelevant variability as compared to non-dancers. These findings suggest that long-term specialized dance training can improve the central nervous system's ability to utilize the redundant DoFs in the whole-body system.


Assuntos
Sistema Nervoso Central/fisiologia , Dança , Adulto , Algoritmos , Feminino , Humanos , Masculino , Modelos Teóricos , Atividade Motora , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA