Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Porcine Health Manag ; 9(1): 55, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093314

RESUMO

BACKGROUND: Pre-slaughter process during transportation, handling, and lairage causes stress in pigs, affecting animal welfare and meat quality. Therefore, lairage factors are important for relieving stress. A total of 24 LYD (Landrace × Yorkshire × Duroc) barrows were used to investigate the effect of 6 and 20 h lairage time (LT) on cortisol, serotonin, and catecholamine in blood and physiological factors in muscle, and to verify the causal relationship between these factors. RESULTS: The results revealed that cortisol was increased (0.064 ± 0.007 µg/ml), and epinephrine (0.020 ± 0.002 µg/ml) and norepinephrine (1.518 ± 0.071 µg/ml) were lower at a LT of 20 h than those at 6 h, and there was no significant effect on the muscle and carcass characteristic factors. In addition, cortisol and norepinephrine showed a negative correlation (r = -50,346, p = 0.0121), epinephrine and glycogen had a positive correlation (r = 0.4417, p = 0.0307), and serotonin and heat shock protein 70 (HSP70) were positively correlated (r = 0.4715, p = 0.0200). Path analysis indicated that the increase in LT had a direct effect on cortisol, epinephrine, and norepinephrine, and an indirect effect on muscle glycogen. CONCLUSION: This study confirmed the effect of the increase in LT from 6 to 20 h in the lairage room on the stress response of pigs. These findings support the legal requirements that advocate for shorter lairage times, in alignment with enhanced animal welfare standards.

2.
Animals (Basel) ; 13(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37893933

RESUMO

Heat stress inhibits cell proliferation as well as animal production. Here, we aimed to demonstrate that 9-mer disulfide dimer peptide (CopA3) supplementation stabilizes porcine muscle satellite cell (PMSC) proliferation and heat shock protein (HSP) expression at different temperatures. Therefore, we investigated the beneficial effects of CopA3 on PMSCs at three different temperatures (37, 39, and 41 °C). Based on temperature and CopA3 treatment, PMSCs were divided into six different groups including treatment and control groups for each temperature. Cell viability was highest with 10 µg/mL CopA3 and decreased as the concentration increased in a dose-dependent manner. CopA3 significantly increased the cell viability at all temperatures at 24 and 48 h. It significantly decreased apoptosis compared to that in the untreated groups. In addition, it decreased the apoptosis-related protein, Bcl-2-associated X (BAX), expression at 41 °C. Notably, temperature and CopA3 had no effects on the apoptosis-related protein, caspase 3. Expression levels of HSP40, HSP70, and HSP90 were significantly upregulated, whereas those of HSP47 and HSP60 were not affected by temperature changes. Except HSP90, CopA3 did not cause temperature-dependent changes in protein expression. Therefore, CopA3 promotes cell proliferation, inhibits apoptosis, and maintains stable HSP expression, thereby enhancing the heat-stress-tolerance capacity of PMSCs.

3.
J Therm Biol ; 114: 103569, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344027

RESUMO

Heat stress (HS) affects cell culture as well as animal production. Although there have been many reports on the disparate effects of heat stress, its effects on mammalian muscle stem cells are still unclear. In this study, we isolated porcine muscle satellite cells (PMSCs) from the femurs of 1-day-old piglets, and cultured them under three temperature conditions: 37 °C, 39 °C, and 41 °C. Exposure to HS not only decreased the viability and proliferation rates of PMSCs, but also regulated the cell cycle and induced apoptosis. High-temperature culture conditions decreased both protein and gene expression of Pax7, a proliferation and maintenance marker of muscle satellite cells, whereas it increased both protein and gene expression of MyoG, a differentiation marker, and promoted myotube formation in the early stage of differentiation induction. In addition, the protein and gene expression of several heat shock proteins (HSPs) in PMSCs increased due to heat treatment. In conclusion, HS induced the cell cycle arrest of PMSCs, thereby reducing the proliferation rate. In addition, high-temperature culture conditions promoted the formation of myotubes at the early stage of differentiation of PMSCs without additives.


Assuntos
Células Satélites de Músculo Esquelético , Suínos , Animais , Células Satélites de Músculo Esquelético/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mamíferos , Células Cultivadas
4.
Front Vet Sci ; 10: 985040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908511

RESUMO

Heat stress inhibits cellular proliferation and differentiation through the production of reactive oxygen species. Under stress conditions, antioxidant drugs promote stable cellular function by reducing the stress level. We sought to demonstrate 9-mer disulfide dimer peptide (COPA3) supplementation stabilizes fibroblast proliferation and differentiation even under heat stress conditions. In our study, fibroblasts were assigned to two different groups based on the temperature, like 38°C group presented as Control - and 43°C group presented as Heat Stress-. Each group was subdivided into two groups depending upon COPA3 treatment, like 38°C + COPA3 group symbolized Control+ and the 43°C + COPA3 group symbolized as Heat Stress+. Heat stress was observed to decrease the fibroblast viability and function and resulted in alterations in the fibroblast shape and cytoskeleton structure. In contrast, COPA3 stabilized the fibroblast viability, shape, and function. Moreover, heat stress and COPA3 were found to have opposite actions with respect to energy production, which facilitates the stabilization of cellular functions by increasing the heat tolerance capacity. The gene expression levels of antioxidant and heat shock proteins were higher after heat stress. Additionally, heat stress promotes the mitogen-activated protein kinase/ extracellular signal-regulated kinase-nuclear factor erythroid 2-related factor 2 (MAPK/ERK-Nrf2). COPA3 maintained the MAPK/ERK-Nrf2 gene expressions that promote stable fibroblast proliferation, and differentiation as well as suppress apoptosis. These findings suggest that COPA3 supplementation increases the heat tolerance capacity, viability, and functional activity of fibroblasts.

5.
Animals (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36496849

RESUMO

As the global population increases, interest in cultured meat (a new research field) is gradually increasing. The main raw material for the production of cultured meat is muscle stem cells called satellite cells isolated from livestock. However, how to mass proliferate and maintain satellite cells in vitro without genetic manipulation remains unclear. In the present study, we isolated and purified porcine muscle satellite cells (PMSCs) from the femur of a 1-day-old piglet and cultured PMSCs by treating them with an inhibitor (XAV939, Tankyrase (TNKS) inhibitor) or an activator (CHIR99021, glycogen synthase kinase 3 beta (GSK3ß) inhibitor) of Wnt signaling. The CHIR group treated with 3 µM CHIR99021 showed a significantly increased proliferation rate of PMSCs compared to the SC group (control), whereas the XAV group treated with 1 µM XAV939 showed a significantly decreased proliferation rate of PMSCs. CHIR99021 also inhibited the differentiation of PMSCs by reducing the expression of MyoD while maintaining the expression of Pax7 and suppressed apoptosis by regulating the expression of apoptosis-related proteins and genes. RNA sequencing was performed to obtain gene expression profiles following inhibition or activation of the Wnt signaling pathway and various signaling mechanisms related to the maintenance of satellite cells were identified. Our results suggest that inhibition of GSK3ß could dramatically improve the maintenance and mass proliferation ability of PMSCs in vitro by regulating the expression of myogenic markers and the cell cycle.

6.
J Transl Med ; 20(1): 590, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514072

RESUMO

BACKGROUND AND AIMS: Kinin B1 receptors (B1Rs) are implicated in the pathogenesis of fibrosis. This study examined the anti-fibrotic effects of B1R blockade with BI 113823 in two established mouse models of hepatic fibrosis induced by intraperitoneal carbon tetrachloride (CCl4) injection or bile duct ligation (BDL). The mechanisms underlying the protection afforded by B1R inhibition were examined using human peripheral blood cells and LX2 human hepatic stellate cells (HSCs). METHODS: Fibrotic liver diseases were induced in mice by intraperitoneal carbon tetrachloride (CCl4) injection for 6 weeks, and by bile duct ligation (BDL) for 3 weeks, respectively. Mice received daily treatment of vehicle or BI 113823 (B1R antagonist) from onset of the experiment until the end of the study. RESULTS: B1Rs were strongly induced in fibrotic mouse liver. BI 113823 significantly attenuated liver fibrosis and portal hypertension (PH), and improved survival in both CCl4 and BDL mice. BI 113823 significantly reduced the expression of fibrotic proteins α-SMA, collagens 1, 3, 4, and profibrotic growth factors PDGF, TGFß, CTGF, VEGF, proliferating cell nuclear antigen; and reduced hepatic Akt phosphorylation in CCl4- and BDL-induced liver fibrosis. BI 113823 also reduced expression of Cytokines IL-1, IL-6; chemokines MCP-1, MCP-3 and infiltration of inflammatory cells; and inhibited human monocyte and neutrophil activation, transmigration, TNF-α & MPO production in vitro. BI 113823 inhibited TGF-ß and B1R agonist-stimulated human-HSC activation, contraction, proliferation, migration and fibrosis protein expression, and inhibited activation of PI3K/Akt signalling pathway. CONCLUSIONS: B1Rs merits consideration as a novel therapeutic target for chronic liver fibrosis and PH.


Assuntos
Hipertensão Portal , Cirrose Hepática , Receptores de Peptídeos , Animais , Humanos , Camundongos , Tetracloreto de Carbono , Fibrose , Células Estreladas do Fígado , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Cininas/metabolismo , Cininas/farmacologia , Cininas/uso terapêutico , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Peptídeos/antagonistas & inibidores
7.
Sci Rep ; 12(1): 14901, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050408

RESUMO

Heat shock proteins (HSPs) expression protect the cell from stress, this expression varies on tissue and stress level. Here, we investigated the structure and functional expression of HSPs in different chicken organs using meta-analysis. A total of 1253 studies were collected from three different electronic databases from January 1, 2015 to February 1, 2022. Of these studies, 28 were selected based on the specific criteria for this meta-analysis. The results for the expression of HSPs and the comparative expression of HSPs (HSP90, HSP70, and HSP60) in different chicken organs (brain, heart, liver, muscle, and intestine) were analyzed using the odds ratio or the random-effects model (REM) at a confidence interval (CI) of 95%. Compared to the thermoneutral groups, heat stress groups exhibited a significant (P < 0.01) change in their HSP70 expression in the chicken liver (8 trials: REM = 1.41, 95% CI: 0.41, 4.82). The expression of different HSPs in various chicken organs varied and the different organs were categorized according to their expression levels. HSP expression differed among the heart, liver, and muscle of chickens. HSPs expression level depends on the structure and molecular weight of the HSPs, as well as the type of tissue.


Assuntos
Galinhas , Proteínas de Choque Térmico , Animais , Galinhas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico
8.
J Anim Sci Technol ; 64(4): 752-769, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35969701

RESUMO

Wheat gluten is an increasingly common ingredient in poultry diets but its impact on the small intestine in chicken is not fully understood. This study aimed to identify effects of high-gluten diets on chicken small intestines and the variation of their associated transcriptional responses by age. A total of 120 broilers (Ross Strain) were used to perform two animal experiments consisting of two gluten inclusion levels (0% or 25%) by bird's age (1 week or 4 weeks). Transcriptomics and histochemical techniques were employed to study the effect of gluten on their duodenal mucosa using randomly selected 12 broilers (3 chicks per group). A reduction in feed intake and body weight gain was found in the broilers fed a high-gluten containing diet at both ages. Histochemical photomicrographs showed a reduced villus height to crypt depth ratio in the duodenum of gluten-fed broilers at 1 week. We found mainly a significant effect on the gene expression of duodenal mucosa in gluten-fed broilers at 1 week (289 differentially expressed genes [DEGs]). Pathway analyses revealed that the significant DEGs were mainly involved in ribosome, oxidative phosphorylation, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. These pathways are involved in ribosome protein biogenesis, oxidative phosphorylation and fatty acid metabolism, respectively. Our results suggest a pattern of differential gene expression in these pathways that can be linked to chronic inflammation, suppression of cell proliferation, cell cycle arrest and apoptosis. And via such a mode of action, high-gluten inclusion levels in poultry diets could lead to the observed retardation of villi development in the duodenal mucosa of young broiler chicken.

9.
Front Physiol ; 13: 809648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153835

RESUMO

Heat stress, which affects broiler growth performance and immunity, is a major concern in the poultry industry. This meta-analysis aimed to demonstrate the significant effect of heat stress on broiler mass gain and immunoglobulin levels, which regulates the mortality rate of broilers. A total of 2,585 studies were downloaded from PubMed, Web of Science, and Google Scholar from January 1, 2015, to September 1, 2021. Eventually, 28 studies were selected based on specific criteria. The results for body mass gain, total mass of immune organs (thymus, spleen, and bursa of Fabricius), immunoglobulin (IgA, IgG, and IgM) levels, and mortality rate were analyzed using odds ratio or the random-effects model (REM) at a confidence interval (CI) of 95%. Compared to the control, heat stress significantly decreased body mass gain (10 trials: REM = 1.35, 95% CI: 1.21, 1.50). Compared to that in the control, heat stress significantly increased immunoglobulin levels: IgA (7 trials: REM = 1.69, 95% CI: 0.90, 3.16), IgG (6 trials: REM = 1.24, 95% CI: 0.85, 1.81), IgM (8 trials: REM = 0.69, 95% CI: 0.44, 1.08), and heat stress also increased the broiler mortality rate (6 trials: REM = 0.06, 95% CI: 0.01, 0.27). However, there were no significant changes in the immune organs between the control and heat-stressed groups. In conclusion, heat stress remarkably alters the mass gain and immunoglobulin levels of broilers, which may be a cause of the high mortality rate.

10.
J Anim Sci Technol ; 64(6): 1132-1143, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36812017

RESUMO

Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal stem cells by regulating cell cycle. This research hypothesized that CopA3 can promote the proliferation of porcine muscle satellite cells (MSCs). The effects of CopA3 on porcine MSCs, which are important for muscle growth and regeneration, remain unclear. Here, we investigated the effects of CopA3 on porcine MSCs. According to viability results, we designed four groups: control (without CopA3) and three treatment groups (treated with 5,10, and 25 µg/mL of CopA3). At a CopA3 concentration of 5 µg/mL and 10 µg/mL, the proliferation of MSCs increased more than that observed in the control group. Furthermore, compared to that in the control, CopA3 treatment increased the S phase but decreased the G0/G1 phase ratio. Additionally, early and late apoptotic cells were found to be decreased in the 5 µg/mL group. The expressions of the myogenesis-related transcription factor PAX7 and MYOD proteins were significantly upregulated in the 5 µg/mL and 10 µg/mL groups, whereas the MYOG protein remained undetected in all group. This study suggested that CopA3 promotes muscle cell proliferation by regulating the cell cycle of MSCs and can regulate the activity of MSCs by increasing the expressions of PAX7 and MYOD.

11.
Tissue Cell ; 73: 101615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34419738

RESUMO

Cortisol is a ubiquitously expressed stress hormone. In this study, we investigated the effects of exogenous cortisol on porcine gluteal muscles primary cultured satellite cells and fibroblasts. Satellite cells and fibroblasts were mono-or co-cultured, and cells in each type of culture were categorized into the control and cortisol-treated (treatment) groups. We selected 28 µmol mL-1 cortisol for treatment based on their efficacy. Cortisol treatment reduced viability of monocultured satellite cells and fibroblasts. In both monocultured and co-cultured cells, the nucleus in the treatment group was damaged than that control group. Moreover, the total cell cycle duration was shorter in the treatment group than the control group. PAX-7 expression was upregulated in the control group of co-cultured satellite cells and fibroblasts than those remaining groups. Moreover, MyoD expression was downregulated in the cortisol treated group of both mono-and co-cultured satellite cells compared with that in the control group. In co-cultured fibroblasts, MyoD and MyoG expression was upregulated than those remaining groups. The Cyto-C expression was upregulated in the treatment group compared to the control mono-and co-cultured both cells. These results suggest that the selected experimental dose of cortisol reduced cell viability and myogenesis-related gene expression in the monoculture compared to that in the co-culture of satellite cells and fibroblasts.


Assuntos
Fibroblastos/citologia , Hidrocortisona/farmacologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Análise de Componente Principal , Suínos
12.
Poult Sci ; 100(8): 101274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34237551

RESUMO

This study determined the relationship between inflammation and gluconeogenesis level in broilers in different durations of heat stress. A total of 240 Ross 308 broilers were offered control and heat stress temperature from 21 to 35 d post-hatch, each experimental group had 8 replications, and each replication obtained 15 broilers. The temperature in the control (Ctrl) group and heat stress group were maintained at 24 ± 1°C and 34 ± 1°C, respectively throughout the experimental period. Based on the duration of heat stress, the heat stress group was divided into 2 subgroups, like, 7-d heat stress (28-day-old broiler) designated ST group and 14-d heat stress (35-day-old broiler) designated the LT group. The ad libitum commercial feed and fresh water were provided to all experimental broilers during the experiment. The growth performance of experimental broilers was calculated at 35 d. However, the liver and blood samples were collected from the Ctrl group in 21 d, as well as these samples were collected from the heat stress ST and LT groups in 28-d and 35-d, respectively. Obvious gene expression of immunity, gluconeogenesis, glycogenolysis, and glycogenesis, as well as glucose-6-phosphate dehydrogenase and adenosine triphosphate was determined in the liver sample. The blood glucose concentration and histopathology of the liver was also examined in the different grouped broilers. Body weight, weight gain, and feed intake significantly decreased in the 35-d heat stress group than the Ctrl group. However, the feed conversion ratio increased at the 35-d heat stress group than the Ctrl group. The amount of glucose-6-phosphate dehydrogenase was significantly higher in ST and LT groups than Ctrl, whereas the blood glucose level was downregulated in the LT group. The amount of adenosine triphosphate was significantly decreased in the LT group than the Ctrl and ST groups. Heat stress acts as an impediment to the general relation between gluconeogenesis and immunity, as well as changes cellular structure. This experiment contributed to the establishment of a relationship between gluconeogenesis and immunity, which affects the growth performance of broilers during heat stress.


Assuntos
Galinhas , Transtornos de Estresse por Calor , Ração Animal/análise , Animais , Gluconeogênese , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Temperatura Alta , Fígado/metabolismo
13.
Animals (Basel) ; 11(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066761

RESUMO

As environmental temperatures continue to rise, heat stress (HS) is having a negative effect on the livestock industry. In order to solve this problem, many studies have been conducted to reduce HS. Among them, early heat exposure has been suggested as a method for reducing HS in poultry. In this study, we analyzed proteomics and tried to identify the metabolic mechanisms of early heat exposure on acute HS. A total of 48 chicks were separated into three groups: CC (control groups raised at optimum temperature), CH (raised with CC but exposed acute HS at the 35th day), and HH (raised with CC but exposed early heat at the fifth day and acute HS at the 35th day). After the whole period, liver samples were collected for proteomic analysis. A total of 97 differentially expressed proteins were identified by acute HS. Of these, 62 proteins recovered their expression levels by early heat exposure. We used these 62 proteins to determine the protective effects of early heat exposure. Of the various protein-related terms, we focused on the oxidative phosphorylation, fatty acid metabolism, carbohydrate metabolism, and energy production metabolism. Our findings suggest the possibility of early heat exposure effects in acute HS that may be useful in breeding or management techniques for producing broilers with high heat resistance.

14.
Poult Sci ; 100(3): 100964, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33652533

RESUMO

The effects of early heat conditioning on the acute heat stress response in broilers were investigated via the growth performance, dopamine, serotonin, and corticosterone and the expression of heat shock proteins (HSP) and heat shock factors. One-day-old chicks (n = 144) were divided into 3 groups in a 35-d experiment (48 chicks per each group). Group 1 (C) was treated with an optimum temperature, group 2 (CH) was treated with 40°C ± 1°C on day 35 (5 h), and group 3 (HH) was treated with 40°C ± 1°C on day 5 (24 h) and day 35 (5 h). On day 7, the body weight gain was lower (P < 0.05) in HH than in C and CH. On day 35, the heat-treated groups (CH and HH) had lower weight gains than the C group (P < 0.05), whereas the feed conversion ratio was lower in HH (P < 0.05). Serum corticosterone was higher in CH than in C, but HH and C did not differ (P < 0.05). Liver HSP70 protein expression was higher in CH than HH and C (P < 0.05), which did not differ, and HSP40 protein expression was higher in CH than C (P < 0.05). These results suggest that early heat conditioning may reduce acute heat stress on broiler.


Assuntos
Galinhas , Regulação da Expressão Gênica , Crescimento , Proteínas de Choque Térmico , Resposta ao Choque Térmico , Animais , Galinhas/sangue , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Crescimento/fisiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Temperatura Alta , Aumento de Peso/fisiologia
15.
Anim Biosci ; 34(8): 1392-1402, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33561926

RESUMO

OBJECTIVE: The growth rate of pigs is related to differentiation and proliferation of muscle cells, which are regulated by growth factors and expression of growth-related genes. Thus, the objective of this study was to establish optimal culture conditions for Jeju black pig (JBP) muscle cells and determine the relationship of various factors involved in muscle growth with the proliferation of JBP muscle cells. METHODS: Muscles were taken from the femur skeletal muscle of JBP embryos. After isolation of the muscle cells, cells were cultured in a 6-well plate under four different culture conditions to optimize culture conditions for JBP muscle cells. To analyze proliferation rate of JBP muscle cells, these muscle cells were seeded into 6-well plates at a density of 1.5×105 cells per well and cultured for 3 days. Western blot and quantitative real-time polymerase chain reaction were applied to verify the myogenic differentiation 1 (MyoD) expression and growth-related gene expression in JBP muscle cells, respectively. RESULTS: We established a muscle cell line from JBP embryos and optimized its culture conditions. These muscle cells were positive for MyoD, but not for paired box 7. The proliferation rate of these muscle cells was significantly higher in a culture medium containing bFGF and epidermal growth factor + basic fibroblast growth factor (EGF+bFGF) than that without a growth factor or containing EGF alone. Treatment with EGF and bFGF significantly induced the expression of MyoD protein, an important transcription factor in muscle cells. Moreover, we checked the changes of expression of growth-related genes in JBP muscle cells by presence or absence of growth factors. Expression level of collagen type XXI alpha 1 gene was changed only when EGF and bFGF were added together to culture media for JBP muscle cells. CONCLUSION: Concurrent use of EGF and bFGF increased the expression of MyoD protein, thus regulating the proliferation of JBP muscle cells and the expression of growth-related genes.

16.
Anim Biotechnol ; 32(6): 774-785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32340526

RESUMO

Satellite cells promote muscle repairing and muscle growth. Thereby the intention of the present study was to investigate the beneficial effects of heat stress at different time intervals on chicken satellite cells' viability. Satellite cells were isolated from 1-day-old chicks and treated at two different temperatures (37 °C and 41 °C) for various time periods (6 h, 12 h, 24 h, 48 h, and 72 h). Both temperatures significantly increased cell viability after 24 h and 48 h. After 12 h, cell viability was significantly increased at 41 °C compared to 37 °C. However, more apoptotic cells were observed at end of the experiment of 41 °C compared to 37 °C. In addition, more live cells were found at early of experimental period at 41 °C than 37 °C. Additionally, protein and mRNA expression of HSP70, HP60 and HSP47 were significantly upregulated throughout the experimental period at temperature of 41 °C compared to those at 37 °C. These results indicate that cell viability and expression of heat stress related proteins/genes are induced by high temperature of 41 °C via heat stress pathway whereas activation of heat stress related proteins/genes are lower at 37 °C. Thus, 41 °C can trigger satellite cells' viability essential for better cell survival than 37 °C at early incubation time.


Assuntos
Galinhas , Proteínas de Choque Térmico , Temperatura Alta , Cultura Primária de Células/veterinária , Células Satélites de Músculo Esquelético/citologia , Animais , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico
17.
Sci Rep ; 10(1): 18872, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139769

RESUMO

Chronic heat stress is considered to decrease the immune functions which makes negative effect on broiler growth performance. Here, we investigated the relationship between chronic heat stress, growth performance, and immunity in the small intestine of broilers. The study included two groups (control and heat stressed group) with eight replications per group. Ten broilers of 20-day aged were allocated in each replication. On day 35, the treatment group was subdivided into two groups based on their body weights (heavy and low body weight). Although, there was only the control and treatment group on day 28. The growth performance decreased and expression of heat shock protein 70 (HSP70), HSP60, and HSP47 increased on days 28 and 35 in the chronic heat stress group as compared with those in the control group. The expression levels of HSPs were significantly higher in the low body weight group than in the control group. The genes HSP70 and HSP60 were significantly associated with pro- and anti-inflammatory cytokines in the small intestine of the broilers of the treatment group. Thus, HSP70 and HSP60 activated the adaptive immunity in the small intestines of the broilers from the treatment group to allow adaptation to chronic heat stress environment.


Assuntos
Transtornos de Estresse por Calor/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Animais , Galinhas/genética , Galinhas/imunologia , Transtornos de Estresse por Calor/veterinária , Proteínas de Choque Térmico/imunologia , Resposta ao Choque Térmico/imunologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia
18.
Cell Stress Chaperones ; 25(6): 1033-1043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32696180

RESUMO

Fibroblasts produce collagen which is mainly essential for repairing tissue damage and maintaining the structural integrity of tissues. However, studies have given scientific evidence about harmful effect of thermal manipulation in fibroblast. Therefore, the aim of this study was to determine the mild heat stress temperature which increased broiler fibroblast viability. The experiment was divided into two groups (37 °C and 41 °C), and each group was divided into five subgroups based on different incubation times (6 h, 12 h, 24 h, 48 h, and 72 h) with three replications. In experimental group (41 °C), fibroblast viability increased significantly in 12 h but decreased in 72 h compared with control (37 °C). At 41 °C, live cell increased significantly in 24 h and then declined in 48 h as well as 72 h than control. Moreover, the S phase lengthened in shorter incubation time of experimental group compared with control. Protein and mRNA (HSP70, HSP60, and HSP47) expressions were significantly higher at 41 °C compared with 37 °C, but at the end of the experiment, HSP expression level was higher in both groups. Finally, this study recommended 41 °C as a mild heat stress temperature for increasing broiler fibroblast viability.


Assuntos
Galinhas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Animais , Apoptose , Ciclo Celular , Forma Celular , Sobrevivência Celular , Células Cultivadas , Temperatura Alta , Modelos Biológicos , Necrose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem
19.
Animals (Basel) ; 10(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708054

RESUMO

In this study, we examined the protein and gene expression of heat shock proteins (HSPs) in different sections of the small intestine of chickens. In total, 300 one-day-old Ross 308 broiler chicks were randomly allocated to the control and treatment groups. The treatment group was divided into four subgroups, according to the duration of acute heat exposure (3, 6, 12, and 24 h). The influence of heat stress on the protein and gene expression of HSP70, HSP60, and HSP47 in different sections of the small intestine of chickens was determined. The protein expression of HSP70 and HSP60 was significantly higher at 6 h in the duodenum and jejunum and 12 h in the ileum. The HSP47 protein expression was significantly higher at 3 h in the duodenum and ileum and at 6 h in the jejunum. The gene expression levels of HSP70, HSP60, and HSP47 were significantly higher at the 3 h treatment group than the control group in the duodenum, jejunum, and ileum. The glutamate pyruvate transaminase and glutamate oxaloacetate transaminase levels were significantly higher at 12 and 24 h in the serum of the blood. Acute heat stress affected the expression of intestinal proteins and genes in chickens, until the induction of heat tolerance.

20.
Animals (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230934

RESUMO

The aim of the study was to analyze the in ovo injection of inorganic and organic synthesized silver nanoparticles (Ag NPs) using Brassica oleracea L. var. capitate F. rubra (BOL) conjugation with L-Arginine (L-Arg) on the immune, muscle growth, survivability and hatchability of broiler chickens. The conjugation of L-Arg (100 µg) with 1000 µg of Ag NPs synthesized by (BOL)-extract and L-Arg (100 µg) conjugated with 100 µg of Ag NPs inorganic synthesized were injected into fertile eggs at 8 d, 14 d and 18 d of incubation. Survival and hatching rate were significantly improved in the dose of L-Arg (100 µg) with 1000 µg (BOL-Ag NPs) and L-Arg (100 µg) with 100 µg (C-Ag NPs) on 14 d injection whereas it was decreased on 8 d or 18 d injection. Moreover, the protein expression of muscle development markers such as myogenin and myoD were significantly uprelated in 14 d of incubation whereas the heat shock proteins (HSPs), such as HSP-60 and HSP-70, were significantly upregulated in 18 d incubation. In addition, the liver function marker of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were significantly decreased and the immunoglobulin (IgM) levels were increased in a 14 d incubation period in serum at the same concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA