Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(6): 3522-3533, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884134

RESUMO

Parkinson's disease (PD) is a neurodegenerative pathology caused by the progressive loss of dopaminergic neurons in the substantia nigra. Juvenile PD is known to be strongly associated with mutations in the PARK2 gene encoding E3 ubiquitin ligase Parkin. Despite numerous studies, molecular mechanisms that trigger PD remain largely unknown. Here, we compared the transcriptome of the neural progenitor (NP) cell line, derived from a PD patient with PARK2 mutation resulting in Parkin loss, with the transcriptome of the same NPs but expressing transgenic Parkin. We found that Parkin overexpression led to the substantial recovery of the transcriptome of NPs to a normal state indicating that alterations of transcription in PD-derived NPs were mainly caused by PARK2 mutations. Among genes significantly dysregulated in PD-derived NPs, 106 genes unambiguously restored their expression after reestablishing of the Parkin level. Based on the selected gene sets, we revealed the enriched Gene Ontology (GO) pathways including signaling, neurotransmitter transport and metabolism, response to stimulus, and apoptosis. Strikingly, dopamine receptor D4 that was previously associated with PD appears to be involved in the maximal number of GO-enriched pathways and therefore may be considered as a potential trigger of PD progression. Our findings may help in the screening for promising targets for PD treatment.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Células-Tronco/metabolismo , Transcriptoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902300

RESUMO

The production and transplantation of functionally active human neurons is a promising approach to cell therapy. Biocompatible and biodegradable matrices that effectively promote the growth and directed differentiation of neural precursor cells (NPCs) into the desired neuronal types are very important. The aim of this study was to evaluate the suitability of novel composite coatings (CCs) containing recombinant spidroins (RSs) rS1/9 and rS2/12 in combination with recombinant fused proteins (FP) carrying bioactive motifs (BAP) of the extracellular matrix (ECM) proteins for the growth of NPCs derived from human induced pluripotent stem cells (iPSC) and their differentiation into neurons. NPCs were produced by the directed differentiation of human iPSCs. The growth and differentiation of NPCs cultured on different CC variants were compared with a Matrigel (MG) coating using qPCR analysis, immunocytochemical staining, and ELISA. An investigation revealed that the use of CCs consisting of a mixture of two RSs and FPs with different peptide motifs of ECMs increased the efficiency of obtaining neurons differentiated from iPSCs compared to Matrigel. CC consisting of two RSs and FPs with Arg-Gly-Asp-Ser (RGDS) and heparin binding peptide (HBP) is the most effective for the support of NPCs and their neuronal differentiation.


Assuntos
Fibroínas , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Fibroínas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neurônios , Diferenciação Celular , Peptídeos/farmacologia
3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768317

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the PARK2 gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events. In response to inflammatory factors produced by activated microglia, astrocytes change their transcriptional programs and secretion profiles, thus acting as immunocompetent cells. Here, we investigated iPSC-derived glial cell cultures obtained from healthy donors (HD) and from PD patients with PARK2 mutations in resting state and upon stimulation by TNFα. The non-stimulated glia of PD patients demonstrated higher IL1B and IL6 expression levels and increased IL6 protein synthesis, while BDNF and GDNF expression was down-regulated when compared to that of the glial cells of HDs. In the presence of TNFα, all of the glial cultures displayed a multiplied expression of genes encoding inflammatory cytokines: TNFA, IL1B, and IL6, as well as IL6 protein synthesis, although PD glia responded to TNFα stimulation less strongly than HD glia. Our results demonstrated a pro-inflammatory shift, a suppression of the neuroprotective gene program, and some depletion of reactivity to TNFα in PARK2-deficient glia compared to glial cells of HDs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neuroglia , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Neuroglia/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo
4.
Antioxidants (Basel) ; 11(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35052646

RESUMO

Oxidative stress (OS) is implicated in the pathogenesis of several neurodegenerative diseases. We have previously shown that N-acyl dopamines (N-ADA and N-DDA) protect the neural cells of healthy donors and patients with Parkinson's disease from OS. In this study, we assessed the effects of N-acyl dopamines on the expression of neurotrophic factors in human-induced pluripotent stem cell-derived neuronal cultures enriched with dopaminergic neurons under conditions of OS induced by hydrogen peroxide. We showed that hydrogen peroxide treatment increased BDNF but not GDNF mRNA levels, while it did not affect the secretion of corresponding proteins into the culture medium of these cells. Application of N-acyl dopamines promoted BDNF release into the culture medium. Under conditions of OS, N-DDA also increased TRKB, TRKC and RET mRNA levels. Furthermore, N-acyl dopamines prevented cell death 24 h after OS induction and promoted the expression of antioxidant enzymes GPX1, GPX7, SOD1, SOD2 and CAT, as well as reduced the BAX/BCL2 mRNA ratio. These findings indicate that stimulation of the expression of neurotrophic factors and their receptors may underlie the neuroprotective effects of N-acyl dopamines in human neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA