Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Auton Neurosci ; 250: 103129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37950930

RESUMO

Pharmacological stimulation of the vagus nerve has been shown to suppress inflammation and reduce blood pressure in a murine model of systemic lupus erythematosus (SLE) that is characterized by hypertension, inflammation, renal injury and dysautonomia. The present study aims to directly stimulate vagal nerves at the level of the dorsal motor nucleus of the vagus (DMV) using designer receptors exclusively activated by designer drugs (DREADDs) to determine if there is similar protection and confirm mechanism. Female NZBWF1/J (SLE) mice and NZW/LacJ mice (controls, labeled as NZW throughout) received bilateral microinjections of pAAV-hSyn-hM3D(Gq)-mCherry or control virus into the DMV at 31 weeks of age. After two weeks of recovery and viral transfection, the DREADD agonist clozapine-N-oxide (CNO; 3 mg/kg) was injected subcutaneously for an additional 14 days. At 35 weeks, mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to NZW mice, but selective activation of DMV neurons did not significantly alter MAP in either group. SLE mice had higher indices of renal injury including albumin excretion rate (µg/day), glomerulosclerosis index, interstitial fibrosis, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) compared to NZW mice. Selective DMV neuronal activation reduced albumin excretion rate, glomerulosclerosis, interstitial fibrosis, and NGAL in SLE mice but not NZW mice. Together, these data indicate that selective activation of neurons within the DMV by DREADD protects the kidney suggesting an important role of vagus-mediated pathways in the progression of renal injury in SLE.


Assuntos
Nefropatias , Lúpus Eritematoso Sistêmico , Camundongos , Feminino , Animais , Lipocalina-2/metabolismo , Rim , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Inflamação/metabolismo , Nervo Vago , Albuminas/metabolismo , Fibrose
2.
Life Sci ; 278: 119534, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933461

RESUMO

Diabetes promotes renal sympathetic hyperactivity, autonomic imbalance, and cardiovascular and renal dysfunction. Bilateral renal denervation (BRD) has emerged as a treatment for diabetes; however, the mechanisms that underlie the beneficial effects of BRD are unknown. AIMS: The present study evaluated the effects of BRD on autonomic, cardiovascular, metabolic, and renal function in streptozotocin-diabetic rats. MAIN METHODS: Wistar rats were separated into three experimental groups: control (CTR), diabetic (DM), and diabetic that underwent BRD (DM BRD). BRD was performed two weeks after STZ-diabetes induction, the experiments were performed four weeks after DM induction. This study evaluated sympathetic vasomotor nerve activity in different territories (renal, lumbar and splanchnic), arterial baroreceptor reflex, metabolic and renal function. KEY FINDINGS: BRD significantly reduced glycemia, glycosuria, albuminuria, and SGLT2 gene expression in the kidney in DM rats. Renal sympathetic nerve activity (rSNA) was significantly increased and splanchnic sympathetic nerve activity (sSNA) was significantly decreased in DM rats, without changes in lumbar sympathetic nerve activity (lSNA). BRD was able to normalize sSNA and significantly increase lSNA in DM rats compared to control rats. Additionally, cardiac baroreceptor sensitivity was impaired in DM rats, and BRD significantly improved baroreflex sensitivity. SIGNIFICANCE: Our data suggest that renal nerves play an important role in autonomic, cardiovascular, and renal dysfunction in STZ-DM rats. Thus, sympathetic renal hyperactivity should be considered a possible therapeutic target in diabetic patients.


Assuntos
Sistema Cardiovascular , Denervação , Diabetes Mellitus Experimental/metabolismo , Rim/inervação , Rim/metabolismo , Animais , Barorreflexo , Pressão Sanguínea/efeitos dos fármacos , Cateterismo , Diabetes Mellitus Experimental/fisiopatologia , Coração , Frequência Cardíaca/efeitos dos fármacos , Hematócrito , Masculino , Pressorreceptores/fisiologia , Ratos , Ratos Wistar , Transportador 2 de Glucose-Sódio/metabolismo , Estreptozocina , Sistema Nervoso Simpático/efeitos dos fármacos
3.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33891015

RESUMO

Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.


Assuntos
Arginina Vasopressina/fisiologia , Pressão Sanguínea , Sistema Cardiovascular/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Ocitocina/fisiologia , Animais , Volume Sanguíneo , Doenças Cardiovasculares/etiologia , Humanos , Natriurese , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Caracteres Sexuais
4.
Front Physiol ; 11: 587013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362575

RESUMO

Novel coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its impact on patients with comorbidities is clearly related to fatality cases, and diabetes has been linked to one of the most important causes of severity and mortality in SARS-CoV-2 infected patients. Substantial research progress has been made on COVID-19 therapeutics; however, effective treatments remain unsatisfactory. This unmet clinical need is robustly associated with the complexity of pathophysiological mechanisms described for COVID-19. Several key lung pathophysiological mechanisms promoted by SARS-CoV-2 have driven the response in normoglycemic and hyperglycemic subjects. There is sufficient evidence that glucose metabolism pathways in the lung are closely tied to bacterial proliferation, inflammation, oxidative stress, and pro-thrombotic responses, which lead to severe clinical outcomes. It is also likely that SARS-CoV-2 proliferation is affected by glucose metabolism of type I and type II cells. This review summarizes the current understanding of pathophysiology of SARS-CoV-2 in the lung of diabetic patients and highlights the changes in clinical outcomes of COVID-19 in normoglycemic and hyperglycemic conditions.

5.
Clin Exp Hypertens ; 38(7): 586-593, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27649588

RESUMO

Mesenchymal stem cells (MSC) induced neovascularization and improved renal morphology of the stenotic kidney in 2 kidneys-1 clip (2K-1C) model of renovascular hypertension. The present study evaluated the effects of MSC in the contralateral hypertensive kidney. Three weeks after left renal artery occlusion, MSC were injected into the tail vein of the 2K-1C rats. Renal function and morphology were analyzed in both kidneys. Labeled MSC were found in stenotic and contralateral kidneys. Hypertensive 2K-1C animals presented increased circulating levels of Angiotensin II (Ang II) and renin. MSC prevented the progressive increase of blood pressure and reduced circulating Ang II and renin levels. Stenotic kidney showed reduced renal plasma flow (RPF) and glomerular filtration rate (GFR), whereas the contralateral kidney had a tendency (p > 0.5) of reduction in GFR in spite of unchanged RPF. MSC treatment caused an improvement in GFR with no effect of on RPF in the stenotic kidney. Contralateral kidney showed increased diuresis and natriuresis that were even higher in MSC-treated animals, indicating that cell treatment improved the capacity of the contralateral kidney to excrete sodium. Contralateral kidney expressed higher levels of inflammatory cytokines (IL-6, TNF-α) and signs of fibrosis, which were attenuated by MSC treatment. MSC treatment improved the stenotic kidney function, and it was also beneficial to the contralateral hypertensive kidney because it improved the morphology and preserved its capacity to excrete sodium.


Assuntos
Angiotensina II/sangue , Hipertensão Renovascular , Rim , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Renina/sangue , Animais , Pressão Sanguínea/fisiologia , Hipertensão Renovascular/fisiopatologia , Hipertensão Renovascular/prevenção & controle , Interleucina-6/metabolismo , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal/métodos , Masculino , Ratos , Artéria Renal/cirurgia , Eliminação Renal/fisiologia , Sódio/metabolismo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
6.
Neurosci Lett ; 553: 121-5, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23973335

RESUMO

The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300 g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5 ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1 ± 3.9 vs. saline: 2.2 ± 0.7)ml/210 min, n=8) and water (17.7 ± 1.9 vs. saline: 2.9 ± 0.5 ml/210 min). Conversely, 0.3M NaCl (27.8 ± 2.1 ml/210 min) and water (22.8 ± 2.3 ml/210 min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Coração/fisiopatologia , Muscimol/farmacologia , Ponte/metabolismo , Receptores de GABA-A/metabolismo , Cloreto de Sódio/metabolismo , Animais , Cateterismo , Ingestão de Líquidos , Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Masculino , Ratos Wistar , Cloreto de Sódio/administração & dosagem , Veia Cava Superior/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA