Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nucleic Acids Res ; 51(13): 6899-6913, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246715

RESUMO

Diphthamide (DPH), a conserved amino acid modification on eukaryotic translation elongation factor eEF2, is synthesized via a complex, multi-enzyme pathway. While DPH is non-essential for cell viability and its function has not been resolved, diphtheria and other bacterial toxins ADP-ribosylate DPH to inhibit translation. Characterizing Saccharomyces cerevisiae mutants that lack DPH or show synthetic growth defects in the absence of DPH, we show that loss of DPH increases resistance to the fungal translation inhibitor sordarin and increases -1 ribosomal frameshifting at non-programmed sites during normal translation elongation and at viral programmed frameshifting sites. Ribosome profiling of yeast and mammalian cells lacking DPH reveals increased ribosomal drop-off during elongation, and removal of out-of-frame stop codons restores ribosomal processivity on the ultralong yeast MDN1 mRNA. Finally, we show that ADP-ribosylation of DPH impairs the productive binding of eEF2 to elongating ribosomes. Our results reveal that loss of DPH impairs the fidelity of translocation during translation elongation resulting in increased rates of ribosomal frameshifting throughout elongation and leading to premature termination at out-of-frame stop codons. We propose that the costly, yet non-essential, DPH modification has been conserved through evolution to maintain translational fidelity despite being a target for inactivation by bacterial toxins.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Fator 2 de Elongação de Peptídeos , Saccharomyces cerevisiae , Animais , Toxinas Bacterianas/metabolismo , Códon de Terminação/metabolismo , Mamíferos/genética , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 185(24): 4474-4487.e17, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36334590

RESUMO

How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.


Assuntos
Ribossomos , Saccharomyces cerevisiae , Códon de Iniciação/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
3.
Nature ; 607(7917): 185-190, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732735

RESUMO

Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.


Assuntos
Fator de Iniciação 1 em Eucariotos , Fatores de Iniciação em Eucariotos , RNA de Transferência de Metionina , Subunidades Ribossômicas , Microscopia Crioeletrônica , Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Humanos , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Imagem Individual de Molécula
4.
Mol Cell ; 81(19): 3904-3918.e6, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375581

RESUMO

Polyamines, small organic polycations, are essential for cell viability, and their physiological levels are homeostatically maintained by post-transcriptional regulation of key biosynthetic enzymes. In addition to de novo synthesis, cells can also take up polyamines; however, identifying cellular polyamine transporters has been challenging. Here we show that the S. cerevisiae HOL1 mRNA is under translational control by polyamines, and we reveal that the encoded membrane transporter Hol1 is a high-affinity polyamine transporter and is required for yeast growth under limiting polyamine conditions. Moreover, we show that polyamine inhibition of the translation factor eIF5A impairs translation termination at a Pro-Ser-stop motif in a conserved upstream open reading frame on the HOL1 mRNA to repress Hol1 synthesis under conditions of elevated polyamines. Our findings reveal that polyamine transport, like polyamine biosynthesis, is under translational autoregulation by polyamines in yeast, highlighting the extensive control cells impose on polyamine levels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Fases de Leitura Aberta , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fator de Iniciação de Tradução Eucariótico 5A
5.
Nat Commun ; 11(1): 5003, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024099

RESUMO

Recognition of a start codon by the initiator aminoacyl-tRNA determines the reading frame of messenger RNA (mRNA) translation by the ribosome. In eukaryotes, the GTPase eIF5B collaborates in the correct positioning of the initiator Met-tRNAiMet on the ribosome in the later stages of translation initiation, gating entrance into elongation. Leveraging the long residence time of eIF5B on the ribosome recently identified by single-molecule fluorescence measurements, we determine the cryoEM structure of the naturally long-lived ribosome complex with eIF5B and Met-tRNAiMet immediately before transition into elongation. The structure uncovers an unexpected, eukaryotic specific and dynamic fidelity checkpoint implemented by eIF5B in concert with components of the large ribosomal subunit.


Assuntos
Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Maiores/metabolismo , Acilação , Anticódon , Microscopia Crioeletrônica , Fatores de Iniciação em Eucariotos/genética , Guanosina Difosfato/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/genética , Subunidades Ribossômicas Maiores de Eucariotos , Subunidades Ribossômicas Menores de Eucariotos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
6.
Nucleic Acids Res ; 47(2): 855-867, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30517694

RESUMO

The heterotrimeric eukaryotic translation initiation factor (eIF) 2 plays critical roles in delivering initiator Met-tRNAiMet to the 40S ribosomal subunit and in selecting the translation initiation site. Genetic analyses of patients with MEHMO syndrome, an X-linked intellectual disability syndrome, have identified several unique mutations in the EIF2S3 gene that encodes the γ subunit of eIF2. To gain insights into the molecular consequences of MEHMO syndrome mutations on eIF2 function, we generated a yeast model of the human eIF2γ-I259M mutant, previously identified in a patient with MEHMO syndrome. The corresponding eIF2γ-I318M mutation impaired yeast cell growth and derepressed GCN4 expression, an indicator of defective eIF2-GTP-Met-tRNAiMet complex formation, and, likewise, overexpression of human eIF2γ-I259M derepressed ATF4 messenger RNA translation in human cells. The yeast eIF2γ-I318M mutation also increased initiation from near-cognate start codons. Biochemical analyses revealed a defect in Met-tRNAiMet binding to the mutant yeast eIF2 complexes in vivo and in vitro. Overexpression of tRNAiMet restored Met-tRNAiMet binding to eIF2 in vivo and rescued the growth defect in the eIF2γ-I318M strain. Based on these findings and the structure of eIF2, we propose that the I259M mutation impairs Met-tRNAiMet binding, causing altered control of protein synthesis that underlies MEHMO syndrome.


Assuntos
Epilepsia/genética , Fator de Iniciação 2 em Eucariotos/genética , Genitália/anormalidades , Hipogonadismo/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Microcefalia/genética , Mutação , Obesidade/genética , RNA de Transferência de Metionina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Códon de Iniciação , Fator de Iniciação 2 em Eucariotos/química , Células HEK293 , Humanos , RNA de Transferência de Metionina/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 70(2): 254-264.e6, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677493

RESUMO

Translation initiation is typically restricted to AUG codons, and scanning eukaryotic ribosomes inefficiently recognize near-cognate codons. We show that queuing of scanning ribosomes behind a paused elongating ribosome promotes initiation at upstream weak start sites. Ribosomal profiling reveals polyamine-dependent pausing of elongating ribosomes on a conserved Pro-Pro-Trp (PPW) motif in an inhibitory non-AUG-initiated upstream conserved coding region (uCC) of the antizyme inhibitor 1 (AZIN1) mRNA, encoding a regulator of cellular polyamine synthesis. Mutation of the PPW motif impairs initiation at the uCC's upstream near-cognate AUU start site and derepresses AZIN1 synthesis, whereas substitution of alternate elongation pause sequences restores uCC translation. Impairing ribosome loading reduces uCC translation and paradoxically derepresses AZIN1 synthesis. Finally, we identify the translation factor eIF5A as a sensor and effector for polyamine control of uCC translation. We propose that stalling of elongating ribosomes triggers queuing of scanning ribosomes and promotes initiation by positioning a ribosome near the start codon.


Assuntos
Proteínas de Transporte/biossíntese , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Poliaminas/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Códon de Iniciação , Sequência Conservada , Células HEK293 , Humanos , Camundongos , Fases de Leitura Aberta , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
8.
Nucleic Acids Res ; 45(14): 8392-8402, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637321

RESUMO

Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.


Assuntos
Aminoácidos/metabolismo , Lisina/análogos & derivados , Biossíntese Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Lisina/metabolismo , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Prolina/análogos & derivados , Prolina/química , Prolina/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fator de Iniciação de Tradução Eucariótico 5A
9.
Proc Natl Acad Sci U S A ; 114(11): E2126-E2135, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223523

RESUMO

The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAiMet in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition provokes rearrangement from an open PIC conformation with TC bound in a state not fully engaged with the P site ("POUT") to a closed, arrested conformation with TC tightly bound in the "PIN" state. Yeast ribosomal protein Rps3/uS3 resides in the mRNA entry channel of the 40S subunit and contacts mRNA via conserved residues whose functional importance was unknown. We show that substitutions of these residues reduce bulk translation initiation and diminish initiation at near-cognate UUG start codons in yeast mutants in which UUG selection is abnormally high. Two such substitutions-R116D and R117D-also increase discrimination against an AUG codon in suboptimal Kozak context. Consistently, the Arg116 and Arg117 substitutions destabilize TC binding to 48S PICs reconstituted in vitro with mRNA harboring a UUG start codon, indicating destabilization of the closed PIN state with a UUG-anticodon mismatch. Using model mRNAs lacking contacts with either the mRNA entry or exit channels of the 40S subunit, we demonstrate that Arg116/Arg117 are crucial for stabilizing PIC-mRNA contacts at the entry channel, augmenting the function of eIF3 at both entry and exit channels. The corresponding residues in bacterial uS3 promote the helicase activity of the elongating ribosome, suggesting that uS3 contacts with mRNA enhance multiple phases of translation across different domains of life.


Assuntos
Códon de Iniciação , Complexos Multiproteicos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Alelos , Substituição de Aminoácidos , Fator de Iniciação 5 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/genética , Fator de Iniciação 5 em Eucariotos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/química
10.
Hum Mutat ; 38(4): 409-425, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055140

RESUMO

Impairment of translation initiation and its regulation within the integrated stress response (ISR) and related unfolded-protein response has been identified as a cause of several multisystemic syndromes. Here, we link MEHMO syndrome, whose genetic etiology was unknown, to this group of disorders. MEHMO is a rare X-linked syndrome characterized by profound intellectual disability, epilepsy, hypogonadism and hypogenitalism, microcephaly, and obesity. We have identified a C-terminal frameshift mutation (Ile465Serfs) in the EIF2S3 gene in three families with MEHMO syndrome and a novel maternally inherited missense EIF2S3 variant (c.324T>A; p.Ser108Arg) in another male patient with less severe clinical symptoms. The EIF2S3 gene encodes the γ subunit of eukaryotic translation initiation factor 2 (eIF2), crucial for initiation of protein synthesis and regulation of the ISR. Studies in patient fibroblasts confirm increased ISR activation due to the Ile465Serfs mutation and functional assays in yeast demonstrate that the Ile465Serfs mutation impairs eIF2γ function to a greater extent than tested missense mutations, consistent with the more severe clinical phenotype of the Ile465Serfs male mutation carriers. Thus, we propose that more severe EIF2S3 mutations cause the full MEHMO phenotype, while less deleterious mutations cause a milder form of the syndrome with only a subset of the symptoms.


Assuntos
Epilepsia , Fator de Iniciação 2 em Eucariotos/genética , Hipogonadismo , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Microcefalia , Mutação , Sequência de Aminoácidos , Saúde da Família , Feminino , Genitália/anormalidades , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Obesidade , Linhagem , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Síndrome
11.
EMBO Rep ; 17(12): 1776-1784, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27827794

RESUMO

Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono- and diprolyl-tRNAs. These structures provide a high-resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.


Assuntos
Peptídeos/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas , Ribossomos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Modelos Moleculares , Peptídeos/química , Prolina/química , Ligação Proteica , RNA de Transferência de Prolina/metabolismo , Ribossomos/metabolismo
12.
Elife ; 52016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159451

RESUMO

Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.


Assuntos
Sítios Internos de Entrada Ribossomal , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Microscopia Crioeletrônica , Dicistroviridae/química , Kluyveromyces/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Fator 2 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/ultraestrutura , RNA Mensageiro/ultraestrutura , RNA Viral/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura
13.
J Mol Biol ; 428(18): 3570-3576, 2016 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-27196944

RESUMO

Eukaryotic translation initiation factor eIF5A promotes protein synthesis by resolving polyproline-induced ribosomal stalling. Here, we report a 3.25-Å resolution crystal structure of eIF5A bound to the yeast 80S ribosome. The structure reveals a previously unseen conformation of an eIF5A-ribosome complex and highlights a possible functional link between conformational changes of the ribosome during protein synthesis and the eIF5A-ribosome association.


Assuntos
Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fator de Iniciação de Tradução Eucariótico 5A
14.
Nucleic Acids Res ; 43(4): 2293-312, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25670678

RESUMO

The translation preinitiation complex (PIC) is thought to assume an open conformation when scanning the mRNA leader, with AUG recognition evoking a closed conformation and more stable P site interaction of Met-tRNAi; however, physical evidence is lacking that AUG recognition constrains interaction of mRNA with the 40S binding cleft. We compared patterns of hydroxyl radical cleavage of rRNA by Fe(II)-BABE tethered to unique sites in eIF1A in yeast PICs reconstituted with mRNA harboring an AUG or near-cognate (AUC) start codon. rRNA residues in the P site display reduced cleavage in AUG versus AUC PICs; and enhanced cleavage in the AUC complexes was diminished by mutations of scanning enhancer elements of eIF1A that increase near-cognate recognition in vivo. This suggests that accessibility of these rRNA residues is reduced by accommodation of Met-tRNAi in the P site (PIN state) and by their interactions with the anticodon stem of Met-tRNAi. Our cleavage data also provide evidence that AUG recognition evokes dissociation of eIF1 from its 40S binding site, ejection of the eIF1A-CTT from the P-site and rearrangement to a closed conformation of the entry channel with reduced mobility of mRNA.


Assuntos
Códon de Iniciação , Fator de Iniciação 1 em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/química , Substituição de Aminoácidos , Cisteína/genética , Ácido Edético/análogos & derivados , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Leveduras/genética
15.
Crit Rev Biochem Mol Biol ; 49(5): 413-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25029904

RESUMO

In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a ß-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.


Assuntos
Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
16.
Mol Cell Biol ; 33(18): 3540-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836883

RESUMO

In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Genes Fúngicos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Iniciação Traducional da Cadeia Peptídica , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Conformação Proteica , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Mol Cell ; 51(1): 35-45, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727016

RESUMO

Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues. Addition of eIF5A relieves ribosomal stalling during translation of three consecutive Pro residues in vitro, and loss of eIF5A function impairs translation of polyproline-containing proteins in vivo. Hydroxyl radical probing experiments localized eIF5A near the E site of the ribosome with its hypusine residue adjacent to the acceptor stem of the P site tRNA. Thus, eIF5A, like its bacterial ortholog EFP, is proposed to stimulate the peptidyl transferase activity of the ribosome and facilitate the reactivity of poor substrates like Pro.


Assuntos
Motivos de Aminoácidos , Fatores de Iniciação de Peptídeos/fisiologia , Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Ribossomos/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Fator de Iniciação de Tradução Eucariótico 5A
18.
J Mol Biol ; 425(12): 2083-99, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23541589

RESUMO

The endoplasmic reticulum transmembrane receptor Ire1 senses over-accumulation of unfolded proteins in the endoplasmic reticulum and initiates the unfolded protein response (UPR). The cytoplasmic portion of Ire1 has a protein kinase domain (KD) and a kinase extension nuclease (KEN) domain that cleaves an mRNA for encoding the Hac1 transcription factor needed to express UPR genes. During this UPR signaling, Ire1 proteins self-assemble into an oligomer of dimers, which essentially requires autophosphorylation of a constituent activation loop in the KD. However, it is not clear how dimerization, autophosphorylation, and KEN domain function are precisely coordinated. In this study, we uncoupled the KD and KEN domain functions, by removing the activation loop along with an extended region that we called the auto-inhibitory region (AIR), or by swapping the activation loop with a homologous loop from phosphorylase kinase 1 (Ire1(PHK)). Both Ire1(ΔAIR) and Ire1(PHK) activated the UPR even when either protein contained a mutation (D797A) that abolished the ability of Ire1 KD to transfer phosphates to the AIR. Neither protein functioned when containing mutations in key ATP binding residues (E746A and N749A) or in residues that disrupted Ire1 dimer interface (W426A or R697D). We interpret these results as evidence supporting the notion that the primary function of the kinase domain is to autophosphorylate the AIR in order to relieve auto-inhibition and that ADP acts as a switch to activate the KEN domain-catalyzed HAC1 mRNA cleavage.


Assuntos
Estresse do Retículo Endoplasmático , Glicoproteínas de Membrana/metabolismo , Fosforilase Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Glicoproteínas de Membrana/genética , Modelos Biológicos , Fosforilase Quinase/genética , Fosforilação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Cell ; 48(4): 641-6, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063529

RESUMO

Together with GTP and initiator methionyl-tRNA, translation initiation factor eIF2 forms a ternary complex that binds the 40S ribosome and then scans an mRNA to select the AUG start codon for protein synthesis. Here, we show that a human X-chromosomal neurological disorder characterized by intellectual disability and microcephaly is caused by a missense mutation in eIF2γ (encoded by EIF2S3), the core subunit of the heterotrimeric eIF2 complex. Biochemical studies of human cells overexpressing the eIF2γ mutant and of yeast eIF2γ with the analogous mutation revealed a defect in binding the eIF2ß subunit to eIF2γ. Consistent with this loss of eIF2 integrity, the yeast eIF2γ mutation impaired translation start codon selection and eIF2 function in vivo in a manner that was suppressed by overexpressing eIF2ß. These findings directly link intellectual disability to impaired translation initiation, and provide a mechanistic basis for the human disease due to partial loss of eIF2 function.


Assuntos
Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Deficiência Intelectual/genética , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Fator de Iniciação 2 em Eucariotos/química , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/química
20.
Nat Struct Mol Biol ; 18(11): 1227-34, 2011 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22002225

RESUMO

In contrast to prokaryotic elongation factor EF-Tu, which delivers aminoacyl-tRNAs to the ribosomal A-site, eukaryotic initiation factor eIF2 binds methionyl initiator transfer RNA (Met-tRNA(i)(Met)) to the P-site of the 40S ribosomal subunit. The results of directed hydroxyl radical probing experiments to map binding of Saccharomyces cerevisiae eIF2 on the ribosome and on Met-tRNA(i)(Met) revealed that eIF2γ primarily contacts the acceptor stem of Met-tRNA(i)(Met) and identified a key binding interface between domain III of eIF2γ and 18S rRNA helix h44 on the 40S subunit. Whereas the analogous domain III of EF-Tu contacts the T stem of tRNAs, biochemical analyses demonstrated that eIF2γ domain III is important for ribosome, not Met-tRNA(i)(Met). Thus, despite their structural similarity, eIF2 and EF-Tu bind tRNAs in substantially different manners, and we propose that the tRNA-binding domain III of EF-Tu has acquired a new ribosome-binding function in eIF2γ.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cisteína/genética , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/genética , Guanosina Trifosfato/química , Radical Hidroxila/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA