Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Heliyon ; 10(2): e24577, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312691

RESUMO

Male infertility is a global health concern. However, its underlying pathophysiology remains unclear. Taste receptor type 1 member 3 (TAS1R3) is highly expressed in the testes, indicating its potential involvement in male fertility. Using wild-type and Tas1r3 knockout (KO) mice, we investigated whether TAS1R3 modulates male reproductive function. Tas1r3 KO mice exhibited reduced male fertility compared to WT mice, with fewer live pups per litter and a delayed first litter. Testicular transcriptome analysis indicated suppressed PKA/CREB/StAR signaling-mediated testosterone synthesis in Tas1r3 KO mice. In silico single-cell RNA sequencing revealed considerably higher Tas1r3 expression in Leydig cells than in other testicular cell subtypes. An in vitro study validated that Tas1r3 knockdown downregulated the expression of Creb1 and steroidogenic genes in Leydig cells. Our results suggest that testicular TAS1R3 is intricately involved in male reproduction via the PKA/CREB/StAR signaling pathway, highlighting its potential as a promising target for addressing male infertility.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38007088

RESUMO

Western diet (WD), characterized by a high intake of fats and sugary drinks, is a risk factor for male reproductive impairment. However, the molecular mechanisms underlying this remain unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is highly expressed in extra-oral tissues, particularly in the testes. Here, we investigated to determine the effects of WD intake on male reproduction and whether TAS1R3 mediates WD-induced impairment in male reproduction. Male C57BL/6 J wild-type (WT) and Tas1r3 knockout (KO) mice were fed either a normal diet and plain water (ND) or a 60 % high-fat-diet and 30 % (w/v) sucrose water (WD) for 18 weeks (n = 7-9/group). Long-term WD consumption significantly impaired sperm count, motility and testicular morphology in WT mice with marked Tas1r3 overexpression, whereas Tas1r3 KO mice were protected from WD-induced reproductive impairment. Testicular transcriptome analysis revealed downregulated AMP-activated protein kinase (AMPK) signaling and significantly elevated AMPK-targeted nuclear receptor 4A1 (Nr4a1) expression in WD-fed Tas1r3 KO mice. In vitro studies further validated that Tas1r3 knockdown in Leydig cells prevented the suppression of Nr4a1 and downstream steroidogenic genes (Star, Cyp11a1, Cyp17a1, and Hsd3b1) caused by high glucose, fructose, and palmitic acid levels, and maintained the levels of testosterone. Additionally, we analyzed the public human dataset to assess the clinical implications of our findings and confirmed a significant association between TAS1R3 and male-infertility-related diseases. Our findings suggest that TAS1R3 regulates WD-induced male reproductive impairment via the AMPK/NR4A1 signaling and can be a novel therapeutic target for male infertility.


Assuntos
Infertilidade Masculina , Paladar , Camundongos , Masculino , Humanos , Animais , Paladar/genética , Proteínas Quinases Ativadas por AMP , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Sêmen , Camundongos Knockout , Infertilidade Masculina/genética , Água
3.
BMC Biol ; 21(1): 243, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926812

RESUMO

BACKGROUND: Accumulating evidence supports that the Western diet (WD), a diet high in saturated fat and sugary drinks, contributes to the pathogenesis of anxiety disorders, which are the most prevalent mental disorders worldwide. However, the underlying mechanisms by which WD causes anxiety remain unclear. Abundant expression of taste receptor type 1 member 3 (TAS1R3) has been identified in the hypothalamus, a key brain area involved in sensing peripheral nutritional signals and regulating anxiety. Thus, we investigated the influence of excessive WD intake on anxiety and mechanisms by which WD intake affects anxiety development using wild-type (WT) and Tas1r3 deficient (Tas1r3-/-) mice fed a normal diet (ND) or WD for 12 weeks. RESULTS: WD increased anxiety in male WT mice, whereas male Tas1r3-/- mice were protected from WD-induced anxiety, as assessed by open field (OF), elevated plus maze (EPM), light-dark box (LDB), and novelty-suppressed feeding (NSF) tests. Analyzing the hypothalamic transcriptome of WD-fed WT and Tas1r3-/- mice, we found 1,432 genes significantly up- or down-regulated as a result of Tas1r3 deficiency. Furthermore, bioinformatic analysis revealed that the CREB/BDNF signaling-mediated maintenance of neuronal regeneration, which can prevent anxiety development, was enhanced in WD-fed Tas1r3-/- mice compared with WD-fed WT mice. Additionally, in vitro studies further confirmed that Tas1r3 knockdown prevents the suppression of Creb1 and of CREB-mediated BDNF expression caused by high levels of glucose, fructose, and palmitic acid in hypothalamic neuronal cells. CONCLUSIONS: Our results imply that TAS1R3 may play a key role in WD-induced alterations in hypothalamic functions, and that inhibition of TAS1R3 overactivation in the hypothalamus could offer therapeutic targets to alleviate the effects of WD on anxiety.


Assuntos
Ansiedade , Dieta Ocidental , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Ansiedade/genética , Fator Neurotrófico Derivado do Encéfalo , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética
4.
Nutr Res Pract ; 17(5): 883-898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780220

RESUMO

BACKGROUND/OBJECTIVES: Probiotics have been suggested as potent modulators of age-related disorders in immunological functions, yet little is known about sex-dependent effects of probiotic supplements. Therefore, we aimed to investigate sex-dependent effects of probiotics on profiles of the gut microbiota and peripheral immune cells in healthy older adults. SUBJECTS/METHODS: In a randomized, double-blind, placebo-controlled, multicenter trial, healthy elderly individuals ≥ 65 yrs old were administered probiotic capsules (or placebo) for 12 wk. Gut microbiota was analyzed using 16S rRNA gene sequencing and bioinformatic analyses. Peripheral immune cells were profiled using flow cytometry for lymphocytes (natural killer, B, CD4+ T, and CD8+ T cells), dendritic cells, monocytes, and their subpopulations. RESULTS: Compared with placebo, phylum Firmicutes was significantly reduced in the probiotic group in women, but not in men. At the genus level, sex-specific responses included reductions in the relative abundances of pro-inflammatory gut microbes, including Catabacter and unclassified_Coriobacteriales, and Burkholderia and unclassified Enterobacteriaceae, in men and women, respectively. Peripheral immune cell profiling analysis revealed that in men, probiotics significantly reduced the proportions of dendritic cells and CD14+ CD16- monocytes; however, these effects were not observed in women. In contrast, the proportion of total CD4+ T cells was significantly reduced in women in the probiotic group. Additionally, serum lipopolysaccharide-binding protein levels showed a decreasing tendency that were positively associated with changes in gut bacteria, including Catabacter (ρ = 0.678, P < 0.05) and Burkholderia (ρ = 0.673, P < 0.05) in men and women, respectively. CONCLUSIONS: These results suggest that probiotic supplementation may reduce the incidence of inflammation-related diseases by regulating the profiles of the gut microbiota and peripheral immune cells in healthy elders in a sex-specific manner.

5.
Life Sci ; 334: 122194, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865176

RESUMO

AIMS: Long-term consumption of a western diet (WD), which is characterized by high intake of saturated fats and sugary drinks, causes cognitive impairment. However, the molecular mechanism by which WD induces cognitive impairment remains unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is expressed in extra-oral tissues, including the brain, and particularly in the hippocampus. This study investigated whether TAS1R3 regulates WD-induced cognitive impairment in mice. MAIN METHODS: Male C57BL/6J wild-type (WT) and Tas1r3 knock-out (KO) mice were fed either a normal diet (ND) or WD for 18 weeks. Cognitive functions were assessed using novel object recognition and Barnes maze tests. The mechanisms underlying WD-induced cognitive impairment were assessed using RNA-sequencing and bioinformatics analysis. KEY FINDINGS: Cognitive impairment was observed in WT mice fed WD (WT-WD) compared with WT-ND mice. Conversely, mice lacking TAS1R3 were not cognitively impaired even under long-term WD feeding. Hippocampal transcriptome analysis revealed upregulated AMP-activated protein kinase (AMPK) signaling and increased AMPK-targeted sirtuin 3 expression in KO-WD mice. Pathway enrichment analysis showed that response to oxidative stress was downregulated, whereas neurogenesis was upregulated in dentate gyrus of KO-WD mice. In vitro studies validated the findings, indicating that Tas1r3 knockdown directly upregulated decreased sirtuin 3 expression, its downstream genes-related to oxidative stress, and apoptosis induced by WD condition in hippocampal neuron cells. SIGNIFICANCE: TAS1R3 acts as a critical mediator of WD-induced cognitive impairment in mice, thereby offering potential as a novel therapeutic target to prevent WD-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Dieta Ocidental , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Disfunção Cognitiva/etiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sirtuína 3/metabolismo , Paladar , Receptores Acoplados a Proteínas G/metabolismo
6.
PLoS One ; 18(6): e0286951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315057

RESUMO

Not only the water quantity consumed but also the source of drinking water has been considered for their health benefits, but there is limited evidence. We aimed to determine whether the amount and type of drinking water affect physiological and biological functions, including brain function, by confirming how it affects gut microbiota which has an important regulatory role in host physiology. Three-week-old infant mice were subjected to 1) a water restriction experiment (control group, ad libitum consumption of distilled water; dehydration group, time-limited access to distilled water [15 min/day]) and 2) different water source experiment (distilled water, purified water, spring water, and tap water groups). The gut microbiota and cognitive development were analyzed using the 16S ribosomal ribonucleic acid sequencing method and the Barnes maze, respectively. The relative abundance of Firmicutes and Bacteroidetes and the Firmicutes-to-Bacteroidetes ratio (F/B ratio) changed depending on age (juveniles vs. infants). Insufficient water intake reversed these developmental changes, showing that the relative abundances of Bacteroidetes and Firmicutes and the F/B ratio in dehydrated juvenile mice were similar to those in normal infant mice. Additionally, clustering analysis revealed no significant differences in the intestinal flora in the mice from the different drinking water sources; however, dehydration significantly altered the composition of the genera compared to the other water source groups wherein water was provided ad libitum. Moreover, cognitive development was significantly disrupted by insufficient water intake, although the type of drinking water had no significant influence. Cognitive decline, measured by relative latency, was positively associated with the relative abundance of unclassified Erysipelotrichaceae that were in significantly high relative abundance in the dehydration group. These results suggest that the water quantity consumed, rather than the mineral content of drinking water, is imperative for shaping the early gut microbiota associated with cognitive development during infancy.


Assuntos
Disfunção Cognitiva , Água Potável , Microbioma Gastrointestinal , Animais , Camundongos , Desidratação , Cognição , Bacteroidetes , Firmicutes
7.
Clin Nutr ; 42(6): 1025-1033, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150125

RESUMO

BACKGROUND & AIMS: The beneficial effects of probiotic consumption on age-related decline in cerebral function have been previously reported in the literature; however, the mechanistic link between gut and brain interactions has not yet been fully elucidated. Therefore, this study aimed to identify the role of gut microbiota-derived metabolites in gut-brain interactions via blood metabolomic profiling analysis in clinical trials and in vitro mechanistic studies. METHODS: A randomized, double-blind, placebo-controlled, multicenter clinical trial was conducted in 63 healthy elderly individuals (≥65 years of age). Participants were administered either placebo (placebo group, N = 31) or probiotic capsules (Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI; probiotics group, N = 32) for 12 weeks. Global and targeted metabolomic profiling analyses of their blood samples were then performed using 1H nuclear magnetic resonance and liquid chromatography-mass spectrometry methods, both at baseline and at the end of the trial. Gut microbial analysis was conducted using the 16S ribosomal ribonucleic acid gene sequencing method. Subsequently, microglial BV2 cells were treated in vitro with indole-3-propionic acid (IPA) following lipopolysaccharide stimulation, and neuronal SH-SY5Y cells were treated with conditioned media from the BV2 cells. Finally, the levels of pro-inflammatory cytokines in BV2 cells and neurotrophins in SH-SY5Y cells were quantified using a real-time polymerase chain reaction or enzyme-linked immunosorbent assay. RESULTS: The metabolomic profiling analyses showed that probiotic consumption significantly altered the levels of metabolites involved in tryptophan metabolism (P < 0.01). Among these metabolites, gut microbiota-produced IPA had a 1.91-fold increase in the probiotics group (P < 0.05) and showed a significant relation to gut bacterial profiles (P < 0.01). Elevated IPA levels were also positively associated with the level of serum brain-derived neurotropic factor (BDNF) in the probiotics group (r = 0.28, P < 0.05), showing an inverse trend compared to the placebo group. In addition, in vitro treatment with IPA (5 µM) significantly reduced the concentration of proinflammatory TNF-α in activated microglia (P < 0.05), and neuronal cells cultured with conditioned media from IPA-treated microglia showed a significant increase in BDNF and nerve growth factor production (P < 0.05). CONCLUSIONS: These results show that gut microbiota-produced IPA plays a role in protecting the microglia from inflammation, thus promoting neuronal function. Therefore, this suggests that IPA is a significant mediator linking the interaction between the gut and the brain in the elderly with probiotic supplementation.


Assuntos
Microbioma Gastrointestinal , Neuroblastoma , Fármacos Neuroprotetores , Probióticos , Humanos , Idoso , Microbioma Gastrointestinal/fisiologia , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Meios de Cultivo Condicionados , Método Duplo-Cego
8.
BMC Med ; 21(1): 165, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118698

RESUMO

BACKGROUND: Long-term intake of a Western diet (WD), characterized by a high-fat content and sugary drinks, is hypothesized to contribute to the development of inflammatory bowel disease (IBD). Despite the identified clinical association, the molecular mechanisms by which dietary changes contribute to IBD development remain unknown. Therefore, we examined the influence of long-term intake of a WD on intestinal inflammation and the mechanisms by which WD intake affects IBD development. METHODS: Mice fed normal diet or WD for 10 weeks, and bowel inflammation was evaluated through pathohistological and infiltrated inflammatory cell assessments. To understand the role of intestinal taste receptor type 1 member 3 (TAS1R3) in WD-induced intestinal inflammation, cultured enteroendocrine cells harboring TAS1R3, subjected to RNA interference or antagonist treatment, and Tas1r3-deficient mice were used. RNA-sequencing, flow cytometry, 16S metagenomic sequencing, and bioinformatics analyses were performed to examine the involved mechanisms. To demonstrate their clinical relevance, intestinal biopsies from patients with IBD and mice with dextran sulfate sodium-induced colitis were analyzed. RESULTS: Our study revealed for the first time that intestinal TAS1R3 is a critical mediator of WD-induced intestinal inflammation. WD-fed mice showed marked TAS1R3 overexpression with hallmarks of serious bowel inflammation. Conversely, mice lacking TAS1R3 failed to exhibit inflammatory responses to WD. Mechanistically, intestinal transcriptome analysis revealed that Tas1r3 deficiency suppressed mTOR signaling, significantly increasing the expression of PPARγ (a major mucosal defense enhancer) and upregulating the expression of PPARγ target-gene (tight junction protein and antimicrobial peptide). The gut microbiota of Tas1r3-deficient mice showed expansion of butyrate-producing Clostridia. Moreover, an increased expression of host PPARγ-signaling pathway proteins was positively correlated with butyrate-producing microbes, suggesting that intestinal TAS1R3 regulates the relationship between host metabolism and gut microflora in response to dietary factors. In cultured intestinal cells, regulation of the TAS1R3-mTOR-PPARγ axis was critical for triggering an inflammatory response via proinflammatory cytokine production and secretion. Abnormal regulation of the axis was observed in patients with IBD. CONCLUSIONS: Our findings suggest that the TAS1R3-mTOR-PPARγ axis in the gut links Western diet consumption with intestinal inflammation and is a potential therapeutic target for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Paladar , Dieta Ocidental/efeitos adversos , PPAR gama , Colite/induzido quimicamente , Colite/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Serina-Treonina Quinases TOR/efeitos adversos , Butiratos/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
J Nutr Biochem ; 113: 109254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572070

RESUMO

High-fat diets (HFDs) and frequent consumption of sugar-sweetened beverages (SSBs) are potential contributors to increasing inflammatory bowel disease (IBD) incidences. While HFDs have been implicated in mild intestinal inflammation, the role of sucrose in SSBs remains unclear. Therefore, we studied the role of SSBs in IBD pathogenesis in a mouse model and humans. C57BL6/J mice were given ad libitum access to a sucrose solution or plain water for 10 weeks, with or without an HFD. Interestingly, sucrose solution consumption alone did not induce gut inflammation in mice; however, when combined with an HFD, it dramatically increased the inflammation score, submucosal edema, and CD45+ cell infiltration. 16S ribosomal RNA gene-sequencing revealed that sucrose solution and HFD co-consumption significantly increased the relative abundance of IBD-related pathogenic bacteria when compared with HFD consumption. RNA sequencing and flow cytometry showed that co-consumption promoted pro-inflammatory cytokine and chemokine synthesis, dendritic-cell expansion, and IFN-γ+TNF-α+CD4+ and CD8+ T-cell activation. Fecal microbiota transplantation from HFD- and sucrose water-fed mice into gut-sterilized mice increased the susceptibility to dextran sulfate sodium-induced colitis in the recipient mice. Consistent herewith, high consumption of SSBs and animal fat-rich diets markedly increased systemic inflammation-associated IBD marker expression in humans. In conclusion, SSBs exacerbate HFD-induced colitis by triggering a shift of the gut microbiome into a pathobiome. Our findings provide new insights for the development of strategies aimed at preventing IBD.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Bebidas Adoçadas com Açúcar , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colite/induzido quimicamente , Colite/microbiologia , Doenças Inflamatórias Intestinais/etiologia , Inflamação , Sacarose/efeitos adversos , Água/efeitos adversos , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
10.
Sci Rep ; 12(1): 10911, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764881

RESUMO

This study sought to characterize the impact of long-term dehydration in terms of physiological and biochemical parameters, as well as renal transcriptomes. Furthermore, we assessed whether consumption of specific types of water elicit more beneficial effects on these health parameters. To this end, C57BL/6 mice were either provided water for 15 min/day over 2 and 4 weeks (water restricted; RES), or ad libitum access to distilled (CON), tap, spring, or purified water. Results show that water restriction decreases urine output and hematocrit levels while increasing brain vasopressin mRNA levels in RES mice compared to control mice (CON). Meanwhile, blood urea nitrogen and creatinine levels were higher in the RES group compared to the CON group. Kidney transcriptome analysis further identified kidney damage as the most significant biological process modulated by dehydration. Mechanistically, prolonged dehydration induces kidney damage by suppressing the NRF2-signaling pathway, which targets the cytoprotective defense system. However, type of drinking water does not appear to impact physiological or blood biochemical parameters, nor the renal transcriptome profile, suggesting that sufficient water consumption is critical, irrespective of the water type. Importantly, these findings also inform practical action for environmental sustainability by providing a theoretical basis for reducing bottled water consumption.


Assuntos
Água Potável , Nefropatias , Animais , Desidratação/genética , Desidratação/metabolismo , Ingestão de Líquidos , Rim/metabolismo , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
11.
Transl Psychiatry ; 12(1): 254, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715396

RESUMO

Gut microbiota is suggested to regulate the host's mental health via the gut-brain axis. In this study, we investigated the relationship between the microbiome and psychological pain due to social exclusion. Adult individuals with (n = 14) and without (n = 25) social exclusion experience were assessed for the psychological status using self-reported questionnaires: Beck Anxiety Inventory (BAI), Beck Depression Inventory, and the UCLA Loneliness Scale. The gut microbiota was analyzed by 16 S rRNA gene sequencing and bioinformatics. The exclusion group had a 1.70-fold higher total BAI score and 2.16-fold higher levels of anxiety-related physical symptoms (p < 0.05). The gut microbial profiles also differed between the two groups. The exclusion group showed higher probability of having Prevotella-enriched microbiome (odds ratio, 2.29; 95% confidence interval, 1.65-2.75; p < 0.05), a significantly reduced Firmicutes/Bacteroidetes ratio, and decreased abundance of Faecalibacterium spp. (p < 0.05) which was associated with the duration and intensity of social exclusion (p < 0.05). Our results indicate that the psychological pain due to social exclusion is correlated with the gut microbiota composition, suggesting that targeting social exclusion-related microorganisms can be a new approach to solving psychological problems and related social issues.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Ansiedade , Microbioma Gastrointestinal/fisiologia , Humanos , Dor , Isolamento Social
12.
J Nutr Biochem ; 99: 108854, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530112

RESUMO

Dark chocolate has long been recognized for its mood-altering properties; however, the evidence regarding the emotional effects of daily dark chocolate intake is limited. Therefore, we aimed to investigate the effects of dark chocolate intake on mood in everyday life, with special emphasis on the gut-brain axis. Two different dark chocolates (85% and 70% cocoa content) were tested in this study. In a randomized controlled trial, healthy adults (20-30 y) consumed either 30 g/d of 85% cocoa chocolate (DC85, n=18); 70% cocoa chocolate (DC70, n=16); or no chocolate (control group, CON; n=14); for 3 weeks. Mood states were measured using the Positive and Negative Affect Schedule (PANAS). Daily consumption of dark chocolate significantly reduced negative affect in DC85, but not in DC70. To assess the association between the mood-altering effects of dark chocolate and the gut microbiota, we performed fecal 16S rRNA sequencing analysis for the DC85 and CON groups. Gut microbial diversity was significantly higher in DC85 than CON (P<.05). Blautia obeum levels were significantly elevated and Faecalibacterium prausnitzii levels were reduced in DC85 compared to CON (P<.05). Furthermore, we found that the observed changes in negative affect scores were negatively correlated with diversity and relative abundance of Blautia obeum (P<.05). These findings indicate that dark chocolate exerts prebiotic effects, as evidenced by its ability to restructure the diversity and abundance of intestinal bacteria; thus, it may improve negative emotional states via the gut-brain axis.


Assuntos
Afeto , Cacau/metabolismo , Chocolate/análise , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cacau/química , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
13.
Eur J Nutr ; 61(1): 447-459, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34476568

RESUMO

PURPOSE: We aimed to investigate the link of vitamin C status with vitality and psychological functions in a cross-sectional study, and examine their causal relationship through a randomized controlled trial (RCT). METHODS: We first conducted a population-based cross-sectional investigation of healthy young adults (n = 214, 20-39 years), and analyzed the associations of serum vitamin C concentrations with vitality (fatigue and attention) and mood status (stress, depression, and positive and negative affect) using Pearson's correlation and multiple linear regression analyses. Next, we performed a double-blind RCT in healthy subjects whose serum vitamin C concentrations were inadequate (< 50 µmol/L). Subjects were randomly allocated to receive 500 mg of vitamin C twice a day for 4 weeks (n = 24) or a placebo (n = 22). We assessed vitality, which included fatigue, attention, work engagement, and self-control resources, and measured mood status, including stress, depression, positive and negative affect, and anxiety. ELISA determined serum brain-derived neurotrophic factor (BDNF), and a Stroop color-word test evaluated attention capacity and processing speed. RESULTS: In the cross-sectional data, the serum vitamin C concentration was positively associated with the level of attention (r = 0.16, p = 0.02; standardized ß = 0.21, p = 0.003), while no significant associations with the levels of fatigue and mood variables being found. In the RCT, compared to the placebo, the vitamin C supplementation significantly increased attention (p = 0.03) and work absorption (p = 0.03) with distinct tendency of improvement on fatigue (p = 0.06) and comprehensive work engagement (p = 0.07). The vitamin C supplementation did not affect mood and serum concentrations of BDNF. However, in the Stroop color-word test, the subjects supplemented with vitamin C showed better performance than those in the placebo group (p = 0.04). CONCLUSION: Inadequate vitamin C status is related to a low level of mental vitality. Vitamin C supplementation effectively increased work motivation and attentional focus and contributed to better performance on cognitive tasks requiring sustained attention. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: Cross-sectional study: KCT0005074 (cris.nih.go.kr)/1 June, 2020 (retrospectively registered). Intervention study: KCT0004276 (cris.nih.go.kr)/4 September, 2019.


Assuntos
Suplementos Nutricionais , Vitaminas , Afeto , Ácido Ascórbico , Estudos Transversais , Método Duplo-Cego , Humanos , Vitamina D , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649207

RESUMO

Tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) also has an immunological function to suppress T cell activation in inflammatory circumstances, including graft-versus-host disease (GVHD), a fatal complication after allogeneic bone marrow transplantation (allo-BMT). Although the mononuclear cell expression of IDO1 has been associated with improved outcomes in GVHD, the underlying mechanisms remain unclear. Herein, we used IDO-deficient (Ido1-/-) BMT to understand why myeloid IDO limits the severity of GVHD. Hosts with Ido1-/- BM exhibited increased lethality, with enhanced proinflammatory and reduced regulatory T cell responses compared with wild type (WT) allo-BMT controls. Despite the comparable expression of the myeloid-derived suppressor cell (MDSC) mediators, arginase-1, inducible nitric oxide synthase, and interleukin 10, Ido1-/- Gr-1+CD11b+ cells from allo-BMT or in vitro BM culture showed compromised immune-suppressive functions and were skewed toward the Ly6ClowLy6Ghi subset, compared with the WT counterparts. Importantly, Ido1-/-Gr-1+CD11b+ cells exhibited elevated levels of reactive oxygen species (ROS) and neutrophil numbers. These characteristics were rescued by human IDO1 with intact heme-binding and catalytic activities and were recapitulated by the treatment of WT cells with the IDO1 inhibitor L1-methyl tryptophan. ROS scavenging by N-acetylcysteine reverted the Ido1-/-Gr-1+CD11b+ composition and function to an MDSC state, as well as improved the survival of GVHD hosts with Ido1-/- BM. In summary, myeloid-derived IDO1 enhances GVHD survival by regulating ROS levels and limiting the ability of Gr-1+CD11b+ MDSCs to differentiate into proinflammatory neutrophils. Our findings provide a mechanistic insight into the immune-regulatory roles of the metabolic enzyme IDO1.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Células Supressoras Mieloides/imunologia , Espécies Reativas de Oxigênio/imunologia , Aloenxertos , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Knockout
15.
J Gerontol A Biol Sci Med Sci ; 76(1): 32-40, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32300799

RESUMO

Probiotics have been proposed to ameliorate cognitive impairment and depressive disorder via the gut-brain axis in patients and experimental animal models. However, the beneficial role of probiotics in brain functions of healthy older adults remains unclear. Therefore, a randomized, double-blind, and placebo-controlled multicenter trial was conducted to determine the effects of probiotics on cognition and mood in community-dwelling older adults. Sixty-three healthy elders (≥65 years) consumed either placebo or probiotics containing Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI for 12 weeks. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Brain functions were measured using the Consortium to Establish a Registry for Alzheimer's disease, Satisfaction with life scale, stress questionnaire, Geriatric depression scale, and Positive affect and negative affect schedule. Blood brain-derived neurotrophic factor (BDNF) was determined using enzyme-linked immunosorbent assay. Relative abundance of inflammation-causing gut bacteria was significantly reduced at Week 12 in the probiotics group (p < .05). The probiotics group showed greater improvement in mental flexibility test and stress score than the placebo group (p < .05). Contrary to placebo, probiotics significantly increased serum BDNF level (p < .05). Notably, the gut microbes significantly shifted by probiotics (Eubacterium and Clostridiales) showed significant negative correlation with serum BDNF level only in the probiotics group (RS = -0.37, RS = -0.39, p < .05). In conclusion, probiotics promote mental flexibility and alleviate stress in healthy older adults, along with causing changes in gut microbiota. These results provide evidence supporting health-promoting properties of probiotics as a part of healthy diet in the older adults.


Assuntos
Afeto , Cognição , Microbioma Gastrointestinal , Probióticos/uso terapêutico , Idoso , Método Duplo-Cego , Feminino , Humanos , Vida Independente , Masculino
16.
Nutrients ; 12(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937844

RESUMO

Dietary fiber has been actively studied for its profound impacts on mental health by affecting the gut-brain axis communication. However, the association between dietary fiber intake and depression has been inconsistent, partly due to the lack of consideration of the fiber source. Therefore, this study aimed to examine the association between various sources of dietary fiber and depression in Korean adults through a nationwide cross-sectional study. The study population was a total of 2960 adults between 19 and 64 years of age who participated in the Korean National Health and Nutrition Examination Survey (KNHANES, 2012-2016). Dietary fiber intake from each fiber subtype (crude, cereal, vegetable, fruit, seaweed, and mushroom) was calculated using the Food Frequency Questionnaire (FFQ). Depression prevalence was assessed using a Patient Health Questionnaire (PHQ-9) and self-reported clinical diagnosis by a physician. We found that seaweed (odds ratio (OR) = 0.38; 95% confidence interval (CI): 0.20-0.72; p < 0.05) and mushroom fiber intake (OR = 0.18; 95% CI: 0.01-0.37; p < 0.05) were inversely associated with depressive symptoms assessed using the PHQ-9 parameters. Moreover, seaweed fiber intake was inversely associated with clinical depression diagnosed by a physician (OR = 0.45; 95% CI: 0.23-0.88; p < 0.05). This was the first study to find that higher intakes of seaweed and mushroom fiber were associated with a lower likelihood of depression in a representative cohort of Korean adults, indicating that the specific source of dietary fiber may be an important dietary factor in modulating depression.


Assuntos
Depressão/epidemiologia , Dieta/efeitos adversos , Fibras na Dieta/análise , Adulto , Estudos Transversais , Depressão/etiologia , Dieta/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Razão de Chances , Questionário de Saúde do Paciente , Prevalência , República da Coreia/epidemiologia , Adulto Jovem
17.
Sci Rep ; 10(1): 12130, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699287

RESUMO

The evidence for the beneficial effects of drinking hydrogen-water (HW) is rare. We aimed to investigate the effects of HW consumption on oxidative stress and immune functions in healthy adults using systemic approaches of biochemical, cellular, and molecular nutrition. In a randomized, double-blind, placebo-controlled study, healthy adults (20-59 y) consumed either 1.5 L/d of HW (n = 20) or plain water (PW, n = 18) for 4 weeks. The changes from baseline to the 4th week in serum biological antioxidant potential (BAP), derivatives of reactive oxygen, and 8-Oxo-2'-deoxyguanosine did not differ between groups; however, in those aged ≥ 30 y, BAP increased greater in the HW group than the PW group. Apoptosis of peripheral blood mononuclear cells (PBMCs) was significantly less in the HW group. Flow cytometry analysis of CD4+, CD8+, CD20+, CD14+ and CD11b+ cells showed that the frequency of CD14+ cells decreased in the HW group. RNA-sequencing analysis of PBMCs demonstrated that the transcriptomes of the HW group were clearly distinguished from those of the PW group. Most notably, transcriptional networks of inflammatory responses and NF-κB signaling were significantly down-regulated in the HW group. These finding suggest HW increases antioxidant capacity thereby reducing inflammatory responses in healthy adults.


Assuntos
Apoptose , Hidrogênio/química , Leucócitos Mononucleares/metabolismo , Água/administração & dosagem , Adulto , Antioxidantes/análise , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Análise por Conglomerados , Método Duplo-Cego , Regulação para Baixo/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Hidrogênio/administração & dosagem , Hidrogênio/farmacologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Efeito Placebo , Transcriptoma , Água/química , Adulto Jovem
18.
Nutrients ; 12(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121420

RESUMO

Infancy and childhood are periods of physical and cognitive development that are vulnerable to disruption by dehydration; however, the effects of dehydration on cognitive development during the periods have not yet been fully elucidated. Thus, the present study used a murine model to examine the effects of sustained dehydration on physical growth and cognitive development. Three-week-old C57BL/6J mice were provided either ad libitum (control group) or time-limited (15 min/day; dehydration group) access to water for 4 weeks. Physical growth was examined via a dual-energy X-ray absorptiometry whole-body scan, and cognitive development was assessed using the Barnes maze test. RNA-sequencing and qPCR analyses were carried out to assess the hippocampal transcriptome and the expression of key neurotrophic factors, respectively. These analyses showed that dehydrated mice exhibited a reduced body mass and tail length, and they spent four times longer completing the Barnes maze test than control mice. Moreover, dehydration significantly dysregulated long-term potentiation signaling and specifically decreased hippocampal brain-derived neurotrophic factor (Bdnf) expression. Collectively, these data confirm dehydration inhibits physical growth and suggest that it impairs cognitive development by altering the hippocampal transcriptional network in young mice; thus, they highlight the importance of water as a vital nutrient for optimal growth and development during infancy and childhood.


Assuntos
Peso Corporal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Desenvolvimento Infantil/fisiologia , Cognição/fisiologia , Desidratação/complicações , Animais , Criança , Desidratação/fisiopatologia , Modelos Animais de Doenças , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/fisiologia
19.
Eur J Nutr ; 59(8): 3591-3601, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32055962

RESUMO

PURPOSE: Growing evidence shows that nutrient metabolism affects inflammatory bowel diseases (IBD) development. Previously, we showed that deficiency of indoleamine 2,3-dioxygenase 1 (Ido1), a tryptophan-catabolizing enzyme, reduced the severity of dextran sulfate sodium (DSS)-induced colitis in mice. However, the roles played by intestinal microbiota in generating the differences in disease progression between Ido1+/+ and Ido1-/- mice are unknown. Therefore, we aimed to investigate the interactions between the intestinal microbiome and host IDO1 in governing intestinal inflammatory responses. METHODS: Microbial 16s rRNA sequencing was conducted in Ido1+/+ and Ido1-/- mice after DSS treatment. Bacteria-derived tryptophan metabolites were measured in urine. Transcriptome analysis revealed the effects of the metabolite and IDO1 expression in HCT116 cells. Colitis severity of Ido1+/+ was compared to Ido1-/- mice following fecal microbiota transplantation (FMT). RESULTS: Microbiome analysis through 16S-rRNA gene sequencing showed that IDO1 deficiency increased intestinal bacteria that use tryptophan preferentially to produce indolic compounds. Urinary excretion of 3-indoxyl sulfate, a metabolized form of gut bacteria-derived indole, was significantly higher in Ido1-/- than in Ido1+/+ mice. Transcriptome analysis showed that tight junction transcripts were significantly increased by indole treatment in HCT116 cells; however, the effects were diminished by IDO1 overexpression. Using FMT experiments, we demonstrated that bacteria from Ido1-/- mice could directly attenuate the severity of DSS-induced colitis. CONCLUSIONS: Our results provide evidence that a genetic defect in utilizing tryptophan affects intestinal microbiota profiles, altering microbial metabolites, and colitis development. This suggests that the host and intestinal microbiota communicate through shared nutrient metabolic networks.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Triptofano
20.
J Obes Metab Syndr ; 28(3): 175-185, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31583382

RESUMO

BACKGROUND: Autophagy maintains metabolic homeostasis of muscles, and its impairment may cause muscle dysfunction. Exercise can improve muscle dysfunction induced by long-term high-fat diet. This study aimed to explore the association of autophagy with impaired muscle dysfunction in obese conditions and investigate its relationship with exercise-induced muscle function improvement. METHODS: Male C57BL/6 mice (n=24) were randomly assigned to four groups: low-fat diet+plain water feeding sedentary (CON) group, low-fat diet+plain water feeding exercise (CON+EX) group, high-fat high-sucrose (HFHS) diet-fed sedentary group, and HFHS diet-fed exercise (HFHS+EX) group, and subjected to a single bout of exhaustive exercise. RESULTS: HFHS diet resulted in shorter hanging time, reduced grip force, and lower exhaustion time and distance, and decreased lean mass per body weight. Moreover, in the soleus, which is chosen as a representative red (oxidative) muscle, LC3II/LC3I ratio, P62, and Bnip3 levels were altered following the HFHS diet, and were negatively correlated with muscle performance parameters; exercise significantly decreased the LC3II/LC3 ratio while P62 increased with HFHS diet. Autophagy-related protein changes were not found in the white (glycolytic) gastrocnemius. CONCLUSION: The study revealed that 20-week HFHS diet causes a significant increase in body weight and fat mass, along with a decrease in muscle function. Autophagy-related LC3 and P62 protein expression was negatively correlated with muscle function, and they were reduced when a single bout of exercise stimulated the soleus of obese mice. However, no change of autophagy-related proteins was seen in the gastrocnemius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA