Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Nature ; 605(7910): 509-515, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545674

RESUMO

Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing1-3. Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds4,5. We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.


Assuntos
Envelhecimento , Encéfalo , Líquido Cefalorraquidiano , Células Precursoras de Oligodendrócitos , Oligodendroglia , Animais , Diferenciação Celular/genética , Líquido Cefalorraquidiano/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo
3.
Nature ; 603(7903): 885-892, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165441

RESUMO

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Assuntos
Doença de Alzheimer , Encéfalo , Suscetibilidade a Doenças , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Estudo de Associação Genômica Ampla , Hipocampo/irrigação sanguínea , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Pericitos/metabolismo , Transcriptoma
4.
Front Bioeng Biotechnol ; 9: 673683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996785

RESUMO

Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.

5.
Semin Cell Dev Biol ; 112: 92-104, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33323321

RESUMO

Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Metabolismo dos Lipídeos/genética , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Axônios/metabolismo , Axônios/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dendritos/genética , Dendritos/metabolismo , Dendritos/patologia , Humanos , Lipídeos/genética , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA