Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959592

RESUMO

Developing new organic solvents to support the use of Li metal anodes in secondary batteries is an area of great interest. In particular, research is actively underway to improve battery performance by introducing fluorine to ether solvents, as these are highly compatible with Li metal anodes because fluorine imparts high oxidative stability and relatively low Li-ion solvation ability. However, theoretical analysis of the solvation ability of organic solvents mostly focuses on the electron-withdrawing capability of fluorine. Herein, we analyze the effect of the structural characteristics of solvents on their Li+ ion solvation ability from a computational chemistry perspective. We reveal that the structural constraints imposed on the oxygen binding sites in solvent molecules vary depending on the structural characteristics of the N-membered ring formed by the interaction between the organic solvent and Li+ ions and the internal ring containing the oxygen binding sites. We demonstrate that the structural strain of the organic solvents has a comparable effect on Li+ solvation ability seen for the electrical properties of fluorine elements. This work emphasizes the importance of understanding the structural characteristics and strain when attempting to understand the interactions between solvents and metal cations and effectively control the solvation ability of solvents.

2.
J Colloid Interface Sci ; 642: 523-531, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028159

RESUMO

HYPOTHESIS: Intercellular lipid lamellae, consisting of ceramide, cholesterol, and free fatty acids, are the primary pathways for substances in the stratum corneum (SC). The microphase transition of lipid-assembled monolayers (LAMs), mimicking an initial layer of the SC, would be affected by new types of ceramides: ceramide with ultra-long chain (CULC) and 1-O-acylceramide (CENP) with three chains in different direction. EXPERIMENTS: The LAMs were fabricated with varying the mixing ratio of CULC (or CENP) against base ceramide via Langmuir-Blodgett assembly. Surface pressure-area isotherms and elastic modulus-surface pressure plots were obtained to characterize π-dependent microphase transitions. The surface morphology of LAMs was observed by atomic force microscopy. FINDINGS: The CULCs favored lateral lipid packing, and the CENPs hindered the lateral lipid packing by lying alignment, which was due to their different molecular structures and conformations. The sporadic clusters and empty spaces in the LAMs with CULC were presumably due to the short-range interactions and self-entanglements of ultra-long alkyl chains following the freely jointed chain model, respectively, which was not noticeably observed in the neat LAM films and the LAM films with CENP. The addition of surfactants disrupted the lateral packing of lipids, thus weakening the LAM elasticity. These findings allowed us to understand the role of CULC and CENP in the lipid assemblies and microphase transition behaviors in an initial layer of SC.


Assuntos
Ceramidas , Lipídeos , Lipídeos/química , Ceramidas/análise , Ceramidas/química , Epiderme/química , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/química , Colesterol/química
3.
J Mater Chem B ; 11(10): 2135-2144, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36762491

RESUMO

This study introduces a multilamellar ceramide core-structured microvehicle platform for substantial skin barrier function recovery. Our approach essentially focused on fabricating bacterial cellulose nanofiber (BCNF)-enveloped ceramide-rich lipid microparticles (CerMPs) by solidifying BCNF-armored oil-in-water Pickering emulsions. The oil drops consisted of Ceramide NP (a phytosphingosine backbone N-acylated with a saturated stearic acid) and fatty alcohols (FAs) with a designated stoichiometry. The thin BCNF shell layer completely blocked the growth of ceramide molecular crystals from the CerMPs for a long time. The CerMP cores displayed a multilamellar structure wherein the interlayer distance and lateral packing could be manipulated using FAs with different alkyl chain lengths. The CerMPs remarkably lowered the trans-epidermal water loss while restoring the structural integrity of the epidermis in damaged skin. The results obtained herein highlight that the CerMP system provides a practical methodology for developing various types of skin-friendly formulations that can strengthen the skin barrier function.


Assuntos
Ceramidas , Pele , Ceramidas/química , Recuperação de Função Fisiológica , Epiderme , Água/química
4.
Sci Adv ; 8(42): eabn0597, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260677

RESUMO

Benefiting from the demixing of substances in the two-phase region, a smart polymer laminate film system that exhibits direction-controlled phase separation behavior was developed in this study. Here, nanoemulsion films (NEFs) in which liquid nanodrops were uniformly confined in a polymer laminate film through the layer-by-layer deposition of oppositely charged emulsion nanodrops and polyelectrolytes were fabricated. Upon reaching a critical temperature, the NEFs exhibited a micropore-guided demixing phenomenon. A simulation study based on coarse-grained molecular dynamics revealed that the perpendicular diffusion of oil droplets through the micropores generated in the polyelectrolyte layer is crucial for determining the coarsening kinetics and phase separation level, which is consistent with the experimental results. Considering the substantial advantages of this unique and tunable two-dimensional demixing behavior, the viability of using the as-proposed NEF system for providing an efficient route for the development of smart drug delivery patches was demonstrated.

5.
Macromol Rapid Commun ; 43(7): e2100917, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35213061

RESUMO

This study introduces a cellulose nanofiber surfactant system, in which the surface is hydrophobically modified with different alkyl chain structures for the effective envelopment of solid lipid microparticles (SLMs). To endow bacterial cellulose nanofibers (BCNFs) with excellent ability to assemble at the lipid-water interface, alkyl chains with designated molecular structures, such as decane, didecane, and eicosane, are covalently grafted onto the BCNF surface. Interfacial tension and interfacial rheology measurements indicate that dialkyl chain-grafted BCNFs (diC10 BCNF) exhibit strong interfibrillar association at the interface. The formation of a dense and tough fibrillary membrane contributes significantly to the enveloping of the SLMs, regardless of the lipid type. Because the diC10 BCNF-enveloped SLMs exhibit a core molecular crystalline phase at the microscale, they can immobilize an oil-soluble antioxidant while maintaining its long-term storage stability. These findings show that the cellulose-surfactant-based SLM technology is applicable to the stabilization and formulation of readily denatured active ingredients.


Assuntos
Nanofibras , Antioxidantes , Bactérias , Celulose/química , Lipídeos , Nanofibras/química
6.
Carbohydr Polym ; 272: 118459, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420719

RESUMO

Herein, we propose a cellulose-reinforced hybrid hydrogel system that not only increases mechanical strength, but also allows on-demand drug release. This hybrid hydrogel is specialized by its semi-interpenetrating network structure in which bacterial cellulose nanofibers (BCNFs) penetrate through a polyacrylamide (PAM) mesh. We showed that the interpenetrating BCNFs with a higher aspect ratio of 240 increased the compression strength of PAM/BCNF composite hydrogels approximately 3-fold, compared with that prepared with PAM only, stemming from the reinforcing effect of the rigid natural nanofibers between PAM meshes. We also observed that the swelling kinetics depended on the mechanical properties determined by the BCNF aspect ratio. From further studies on drug release, we demonstrated that the tailored composition of BCNFs with PAM retarded drug release by a factor of two compared to PAM only while enabling on-demand drug release in response to the applied compressive stress. These results highlight that our BCNFs-reinforced hydrogel system can be applied as a mechanical stress-responsive smart drug delivery patch.


Assuntos
Celulose/química , Hidrogéis/química , Nanofibras/química , Resinas Acrílicas/química , Bactérias , Força Compressiva , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Cinética , Reologia/métodos , Estresse Mecânico
7.
Langmuir ; 37(13): 3828-3835, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33780257

RESUMO

In this study, we present a water-in-silicone oil (W/S) Pickering emulsion system stabilized via in situ interfacial coacervation of attractive hectorite nanoplatelets (AHNPs) and bacterial cellulose nanofibrils (BCNFs). A bilayered coacervate is generated at the W/S interface by employing the controlled electrostatic interaction between the positively charged AHNPs and the negatively charged BCNFs. The W/S interface with the bilayered coacervate shows a significant increase in the interfacial modulus by 2 orders of magnitude than that with the AHNPs only. In addition, we observe that water droplets are interconnected by the BCNF bridging across the continuous phase of silicon, which is attributed to the diffusive transport phenomenon. This droplet interconnection results in the effective prevention of drop coalescence, which is confirmed via emulsion sedimentation kinetics. These results indicate that our bilayered coacervation technology has the potential of developing a promising Pickering emulsion platform that can be used in the pharmaceutical and cosmetic industries.

8.
ACS Appl Mater Interfaces ; 13(6): 7664-7671, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533585

RESUMO

A platform is introduced for bilayered coacervation of oppositely charged nanoplatelets (NPLs) at the oil-water interface. To this end, we synthesized two types of zirconium hydrogen phosphate (ZrHP) NPLs, cationically charged NPLs (CNPLs), and anionically charged NPLs (ANPLs) by conducting surface-initiated atom transfer radical polymerization. Taking advantage of the platelet geometry and controlled wettability, we demonstrated that ANPLs and CNPLs coacervate themselves to form a bilayered NPL membrane at the interface, which was directly confirmed by confocal laser scanning microscopy. Via theoretical consideration using the hit-and-miss Monte Carlo method, we determined that electrostatic attraction-driven coacervation of ANPLs and CNPLs at the interface shows a minimum attachment energy of ∼ -106 kBT, which is comparable to the cases where NPLs charged with the same type of ions are attached. Finally, this unique and novel interfacial coacervation behavior allowed us to develop a pH-responsive smart Pickering emulsion system.

9.
Carbohydr Polym ; 258: 117730, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593584

RESUMO

This study introduces a hydrophobically modified bacterial cellulose nanofibrils (BCNF)-stabilized Pickering emulsion system, which can limit the influx of metal ions through the interface. We showed that the C18 alkyl chain-grafted BCNF (C18BCNF) can readily associate to generate a resilient thin membrane at the oil-water interface regardless of the type of oil, which is essential for the production of stable emulsion drops. The viscoelasticity of C18BCNF-armored Pickering emulsion was feasibly tunable by manipulating the grafting amount of the C18 alkyl chains, as well as controlling the C18BCNF concentration. We also demonstrated that the C18BCNF membrane formed at the interface effectively entrapped metal ions through electrostatic binding with the carboxyl groups on C18BCNF, thus maintaining original UV-absorbing capability of chemical UV filter-containing emulsions. We expect that the BCNF surfactant fabricated in this study has immense potential for the development of various complex emulsion products.

10.
Carbohydr Polym ; 229: 115559, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826459

RESUMO

We report a facile but robust approach to fabricate fruit peel-mimetic microcapsules (FPMCs) of which shell was structured by layering cellulose nanofibers (CNFs) with an antioxidant and a waxy compound on monodisperse gelatin microparticles using the layer-by-layer deposition. The thickness and moduli of the shell increased commonly depending on the number of CNF layers, indicating that the incorporation of CNFs made the shell layer rigid. We determined that the coating of the outermost FPMC layer with dodecane nanoemulsions softened the shell surface, thus preventing the generation of microcracks, which is essential for minimizing dehydration in the drying process. Furthermore, we also confirmed that the co-deposition of a phenolic compound, gallic acid, which is encapsulated in the polymeric micelles, with the shell layers allowed the FPMCs to exert antioxidant effects against the influx of oxygen from the atmosphere. These results highlight that our FPMC system could pave the way for the development of a micropackaging technology that enables encapsulation and stabilization of bioactive ingredients.


Assuntos
Cápsulas/química , Celulose/química , Hidrogéis/química , Nanofibras/química , Antioxidantes/química , Força Compressiva , Frutas/química , Gelatina/química , Glutaral/química , Tamanho da Partícula
11.
Soft Matter ; 14(27): 5581-5587, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29901067

RESUMO

This article presents a useful and promising approach for fabricating extremely stable silicone oil nanoemulsions, whose liquid-liquid interface is structured with a thin film of amphiphilic triblock copolymers. For this, two types of amphiphilic triblock polymer, poly(2-methacryloyloxy ethyl phosphorylcholine)-block-poly(ε-caprolactone)-block-poly(2-methacryloyloxy ethyl phosphorylcholine) (PMPC-PCL-PMPC) and poly(2-aminoethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(2-aminoethyl methacrylate) (PAMA-PCL-PAMA), were synthesized by atom transfer radical polymerization. Employing the phase separation technique was critical for the formation of thin polymer interfaces, of less than 10 nm, thus eventually producing structurally stable silicone oil nanoemulsions. The co-assembly of PAMA-PCL-PAMA with PMPC-PCL-PMPC enabled the patching of positive charges on the surface of the emulsion drops. We show that these charged silicone oil nanoemulsions could be used to form a multilayer emulsion thin film by layer-by-layer deposition. Finally, we experimentally demonstrate that the silicone oil nanoemulsions fabricated in this way were highly stable and had the ability to electrostatically interact with hair, which enabled complete coating of the hair surface with a layer of silicone oil.

12.
ACS Biomater Sci Eng ; 4(5): 1723-1729, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445329

RESUMO

Luteolin (3',4',5,7-tetrahydroxyflavone), a type of flavonoid found in medicinal herbs and vegetables, has been of great interest due to its antioxidative, anti-inflammatory, and anticarcinogenic effects. Despite these beneficial biological properties, the ease with which luteolin forms molecular crystals in conventional aqueous formulations has hampered much wider applications. In this study, we introduce an oil-in-water (O/W) nanoemulsion vehicle system for enhanced follicular delivery of luteolin. The luteolin-loaded nanoemulsion, which had an average hydrodynamic size of approximately 290 nm, was produced by the assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) and lecithin at the O/W interface. The luteolin-loaded nanoemulsion showed outstanding stability against drop coalescence and aggregation. This was confirmed from the slight drop size increase after repeated freeze-thaw cycling and long-term storage. Moreover, in vivo hair growth evaluation demonstrated that the luteolin-loaded nanoemulsions fabricated in this study possessed the hair growth-promotion activity, which is comparable with the case of using a luteolin solution in an organic solvent.

13.
Chemistry ; 23(18): 4292-4297, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28102556

RESUMO

This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops.

14.
ACS Appl Mater Interfaces ; 6(21): 19118-26, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25285535

RESUMO

Lithium-ion batteries (LIBs) are considered to be key energy storage systems needed to secure reliable, sustainable, and clean energy sources. Redox-active organic compounds have been proposed as interesting candidates for electrode materials for the next-generation LIBs because of their flexible molecular design, recyclability, and low production cost. Despite wide interest, a molecular-level understanding of the electrochemical lithiations/delithiations of those materials remains rudimentary. We synthesized a set of π-conjugated dicarboxylates and discovered unprecedented excess capacities for inverse-Wurster-type nonfused aromatic compounds (dilithium terephthalate and dilithium thiophene-2,5-dicarboxylate). Molecular structural investigations based on solid-state CP/MAS (13)C NMR combined with the stable isotope labeling method and ex situ X-ray diffraction were carried out to elucidate the origin of the excess reversible capacity. Interestingly, an open-chain-type dilithium muconate did not show an analogous behavior, signifying the key role played by the cyclic moiety in the electrochemical reaction.

15.
Dalton Trans ; 43(30): 11723-7, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24953185

RESUMO

B2O3-added Li(1.5)Al(0.5)Ge(1.5)(PO4)3 (LAGP) glass ceramics showing a room temperature ionic conductivity of 0.67 mS cm(-1) have been synthesized by using a melt-quenching method. The prepared glass ceramics are observed to be stable in tetraethylene glycol dimethyl ether containing lithium bis(trifluoromethane) sulfonamide. The augmented conductivity of the B2O3-added LAGP glass ceramic has improved the plateau potential during discharge. Furthermore, the B2O3-added LAGP glass ceramics are successfully employed as a solid electrolyte in a Li-O2 battery to obtain a stable cycling lifetime of up to 15 cycles with the limited capacity protocol.

16.
Waste Manag Res ; 31(4): 421-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23179512

RESUMO

An economic evaluation of ethanol (EtOH) production from a thermo-chemical process derived from biomass/waste feedstocks was conducted. The influence of feed amounts, catalytic conversions, and EtOH selling prices was examined as these are the major variables for the economic evaluation of biomass/wastes conversion to EtOH. Among the three feedstock systems of biomass, high-moisture municipal solid waste (MSW), and plastic waste, the plastic waste has far better economic feasibility, with a payback period of 2-5 years at maximum CO conversion (40%) from syngas to ethanol, due to its higher heating value in comparison with biomass and high-moisture MSW. The heating value of the feedstock is a key factor in determining the overall economic efficiency in a thermo-chemical EtOH production system. Furthermore, enhancement of the CO conversion (related to catalytic activity) from syngas to EtOH using a low cost catalyst is necessary to retain economic efficiency because the CO conversion and cost consideration of catalyst are crucial factors to reduce the payback period.


Assuntos
Biomassa , Etanol/metabolismo , Catálise , Estudos de Viabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA