Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nat Commun ; 15(1): 4428, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789448

RESUMO

Subducting sedimentary layer typically contains water and hydrated clay minerals. The stability of clay minerals under such hydrous subduction environment would therefore constraint the lithology and physical properties of the subducting slab interface. Here we show that pyrophyllite (Al2Si4O10(OH)2), one of the representative clay minerals in the alumina-silica-water (Al2O3-SiO2-H2O, ASH) system, breakdowns to contain further hydrated minerals, gibbsite (Al(OH)3) and diaspore (AlO(OH)), when subducts along a water-saturated cold subduction geotherm. Such a hydration breakdown occurs at a depth of ~135 km to uptake water by ~1.8 wt%. Subsequently, dehydration breakdown occurs at ~185 km depth to release back the same amount of water, after which the net crystalline water content is preserved down to ~660 km depth, delivering a net amount of ~5.0 wt% H2O in a phase assemblage containing δ-AlOOH and phase Egg (AlSiO3(OH)). Our results thus demonstrate the importance of subducting clays to account the delivery of ~22% of water down to the lower mantle.

2.
Small ; : e2400301, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712481

RESUMO

In this study, it is analyzed how sample geometry (spheres, nanofibers, or films) influences the graphitization behavior of polyacrylonitrile (PAN) molecules. The chemical bonding and changes in the composition of these three geometries are studied at the oxidation, carbonization, and graphitization stages via scanning electron microscopy (SEM), in situ thermogravimetric-infrared (TGA-IR) analysis, elemental analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The influence of molecular alignment on the graphitization of the three sample geometries is investigated using synchrotron wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The effects of molecular alignment at different draw rates during spinning are explored in detail.

3.
Nature ; 629(8011): 348-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658760

RESUMO

Natural diamonds were (and are) formed (thousands of million years ago) in the upper mantle of Earth in metallic melts at temperatures of 900-1,400 °C and at pressures of 5-6 GPa (refs. 1,2). Diamond is thermodynamically stable under high-pressure and high-temperature conditions as per the phase diagram of carbon3. Scientists at General Electric invented and used a high-pressure and high-temperature apparatus in 1955 to synthesize diamonds by using molten iron sulfide at about 7 GPa and 1,600 °C (refs. 4-6). There is an existing model that diamond can be grown using liquid metals only at both high pressure and high temperature7. Here we describe the growth of diamond crystals and polycrystalline diamond films with no seed particles using liquid metal but at 1 atm pressure and at 1,025 °C, breaking this pattern. Diamond grew in the subsurface of liquid metal composed of gallium, iron, nickel and silicon, by catalytic activation of methane and diffusion of carbon atoms into and within the subsurface regions. We found that the supersaturation of carbon in the liquid metal subsurface leads to the nucleation and growth of diamonds, with Si playing an important part in stabilizing tetravalently bonded carbon clusters that play a part in nucleation. Growth of (metastable) diamond in liquid metal at moderate temperature and 1 atm pressure opens many possibilities for further basic science studies and for the scaling of this type of growth.

4.
Biomacromolecules ; 25(3): 1709-1723, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38377481

RESUMO

Polysaccharide nanoporous structures are suitable for various applications, ranging from biomedical scaffolds to adsorption materials, owing to their biocompatibility and large surface areas. Pectin, in particular, can create 3D nanoporous structures in aqueous solutions by binding with calcium cations and creating nanopores by phase separation; this process involves forming hydrogen bonds between alcohols and pectin chains in water and alcohol mixtures and the resulting penetration of alcohols into calcium-bound pectin gels. However, owing to the dehydration and condensation of polysaccharide chains during drying, it has proven to be challenging to maintain the 3D nanoporous structure without using a freeze-drying process or supercritical fluid. Herein, we report a facile method for creating polysaccharide-based xerogels, involving the co-evaporation of water with a nonsolvent (e.g., a low-molecular-weight hydrophobic alcohol such as isopropyl or n-propyl alcohol) at ambient conditions. Experiments and coarse-grained molecular dynamics simulations confirmed that salt-induced phase separation and hydrogen bonding between hydrophobic alcohols and pectin chains were the dominant processes in mixtures of pectin, water, and hydrophobic alcohols. Furthermore, the azeotropic evaporation of water and alcohol mixed in approximately 1:1 molar ratios was maintained during the natural drying process under ambient conditions, preventing the hydration and aggregation of the hydrophilic pectin chains. These results introduce a simple and convenient process to produce 3D polysaccharide xerogels under ambient conditions.


Assuntos
Cálcio , Nanoporos , Cálcio/química , Pectinas/química , Separação de Fases , Água/química , Cloreto de Sódio , Álcoois/química
5.
J Phys Chem B ; 128(10): 2528-2536, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38422507

RESUMO

Evaluation of the insulating properties of polymers, such as the dielectric constant and dissipation factor, is crucial in electronic devices, including field-effect transistors and wireless communication applications. This study applies density functional theory (DFT) to predict the dielectric constant of soluble polyimides (SPIs). Various SPIs containing trifluoromethyl groups in the backbone with different pendant types, numbers, and symmetries are successfully synthesized, and their dielectric constants are evaluated and compared with the DFT-estimated values. Two types of DFT-optimized SPIs, single-chain and stacked-chain models, are used to describe the local geometries of the SPIs. In addition, to reveal the relationship between the molecular structure and dielectric constant, further investigations are conducted by considering the dielectric constant of composing ionic and electronic components. The DFT-estimated static dielectric constant of the single-chain model accurately reproduces the corresponding experimental value with at least 80% accuracy. Our approach provides a rational and accelerated strategy to evaluate polymer insulators for electronic devices based on cost-effective DFT calculations.

6.
ACS Nano ; 17(23): 24282-24289, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009580

RESUMO

Efficient and stable catalysts are highly desired for the electrochemical conversion of hydrogen, oxygen, and water molecules, processes which are crucial for renewable energy conversion and storage technologies. Herein, we report the development of hollow nitrogenated carbon sphere (HNC) dispersed rhodium (Rh) single atoms (Rh1HNC) as an efficient catalyst for bifunctional catalysis. The Rh1HNC was achieved by anchoring Rh single atoms in the HNC matrix with an Rh-N3C1 configuration, via a combination of in situ polymerization and carbonization approach. Benefiting from the strong metal atom-support interaction (SMASI), the Rh and C atoms can collaborate to achieve robust electrochemical performance toward both the hydrogen evolution and oxygen reduction reactions in acidic media. This work not only provides an active site with favorable SMASI for bifunctional catalysis but also brings a strategy for the design and synthesis of efficient and stable bifunctional catalysts for diverse applications.

7.
Inorg Chem ; 62(28): 11073-11079, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37399075

RESUMO

The Ba8.8Ce0.1Na0.1Y2Ge6O24 orthogermanate phosphor, prepared by LiCl flux assistance under a reducing atmosphere, exhibited a mysterious green-yellow emission at 298 K. A blue-emitting orthogermanate phosphor was expected to be achieved through the lower d-band of Ce3+ ions in the host structure owing to their optical structure geometry. Oxygen vacancies were observed in the phosphors through investigating bond-length fluxations, the oxygen 1s profile, and the Ge2+/Ge4+ oxidation state, using synchrotron X-ray diffraction refinement, X-ray photoelectron spectroscopy, and Ge K-edge X-ray absorption near-edge structure spectra, respectively. The Ba-M4,5 edge shift, bonding limitation, and distortion index discovery reveal the oxygen-coordinating environment variation around the Ba2+(Ce3+) ions in the phosphors. The green-yellow emission results from the active 6-coordinated antiprism oxygen geometry around the Ce3+ ions in the phosphors.

8.
Nat Commun ; 14(1): 2319, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087491

RESUMO

Potassium oxide (K2O) is used as a promotor in industrial ammonia synthesis, although metallic potassium (K) is better in theory. The reason K2O is used is because metallic K, which volatilizes around 400 °C, separates from the catalyst in the harsh ammonia synthesis conditions of the Haber-Bosch process. To maximize the efficiency of ammonia synthesis, using metallic K with low temperature reaction below 400 °C is prerequisite. Here, we synthesize ammonia using metallic K and Fe as a catalyst via mechanochemical process near ambient conditions (45 °C, 1 bar). The final ammonia concentration reaches as high as 94.5 vol%, which was extraordinarily higher than that of the Haber-Bosch process (25.0 vol%, 450 °C, 200 bar) and our previous work (82.5 vol%, 45 °C, 1 bar).

9.
Nature ; 616(7958): 724-730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796426

RESUMO

Controlling the crystallinity and surface morphology of perovskite layers by methods such as solvent engineering1,2 and methylammonium chloride addition3-7 is an effective strategy for achieving high-efficiency perovskite solar cells. In particular, it is essential to deposit α-formamidinium lead iodide (FAPbI3) perovskite thin films with few defects due to their excellent crystallinity and large grain size. Here we report the controlled crystallization of perovskite thin films with the combination of alkylammonium chlorides (RACl) added to FAPbI3. The δ-phase to α-phase transition of FAPbI3 and the crystallization process and surface morphology of the perovskite thin films coated with RACl under various conditions were investigated through in situ grazing-incidence wide-angle X-ray diffraction and scanning electron microscopy. RACl added to the precursor solution was believed to be easily volatilized during coating and annealing owing to dissociation into RA0 and HCl with deprotonation of RA+ induced by RA⋯H+-Cl- binding to PbI2 in FAPbI3. Thus, the type and amount of RACl determined the δ-phase to α-phase transition rate, crystallinity, preferred orientation and surface morphology of the final α-FAPbI3. The resulting perovskite thin layers facilitated the fabrication of perovskite solar cells with a power-conversion efficiency of 26.08% (certified 25.73%) under standard illumination.

10.
Adv Mater ; 35(13): e2208423, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36600458

RESUMO

Understanding the local cation order in the crystal structure and its correlation with electrochemical performances has advanced the development of high-energy Mn-rich cathode materials for Li-ion batteries, notably Li- and Mn-rich layered cathodes (LMR, e.g., Li1.2 Ni0.13 Mn0.54 Co0.13 O2 ) that are considered as nanocomposite layered materials with C2/m Li2 MnO3 -type medium-range order (MRO). Moreover, the Li-transport rate in high-capacity Mn-based disordered rock-salt (DRX) cathodes (e.g., Li1.2 Mn0.4 Ti0.4 O2 ) is found to be influenced by the short-range order of cations, underlining the importance of engineering the local cation order in designing high-energy materials. Herein, the nanocomposite is revealed, with a heterogeneous nature (like MRO found in LMR) of ultrahigh-capacity partially ordered cathodes (e.g., Li1.68 Mn1.6 O3.7 F0.3 ) made of distinct domains of spinel-, DRX- and layered-like phases, contrary to conventional single-phase DRX cathodes. This multi-scale understanding of ordering informs engineering the nanocomposite material via Ti doping, altering the intra-particle characteristics to increase the content of the rock-salt phase and heterogeneity within a particle. This strategy markedly improves the reversibility of both Mn- and O-redox processes to enhance the cycling stability of the partially ordered DRX cathodes (nearly ≈30% improvement of capacity retention). This work sheds light on the importance of nanocomposite engineering to develop ultrahigh-performance, low-cost Li-ion cathode materials.

11.
Adv Mater ; 35(13): e2211386, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646632

RESUMO

The development of alkylammonium lead trihalide perovskite (ALHP) photovoltaics has grown rapidly over the past decade. However, there are remaining critical challenges, such as proton defects, which can lead to the material instability of ALHPs. Although specific strategies, including the use of halide additives, have significantly reduced the defects, a fundamental understanding of the defect passivation mechanism remains elusive. Herein, an approach and mechanism for minimizing proton defects in ALHP crystals by adding ionized halides to the perovskite precursor solution are reported. This work clarifies that the ionized halides induced proton transfer from H2 O to the alkylammonium cation in the precursor solution, stabilizing the ALHP crystals. The fundamental characteristics of ALHP and its precursors are examined by X-ray diffraction, transmittance electron microscopy, in situ extended X-ray absorption fine structure, Fourier transform NMR spectroscopy, and Fourier transform infrared spectroscopy. The findings from this work will guide the development of highly stable ALHP crystals, enabling efficient and stable optoelectronic ALHP devices.

12.
Sci Adv ; 8(43): eadd0697, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288304

RESUMO

High-definition red/green/blue (RGB) pixels and deformable form factors are essential for the next-generation advanced displays. Here, we present ultrahigh-resolution full-color perovskite nanocrystal (PeNC) patterning for ultrathin wearable displays. Double-layer transfer printing of the PeNC and organic charge transport layers is developed, which prevents internal cracking of the PeNC film during the transfer printing process. This results in RGB pixelated PeNC patterns of 2550 pixels per inch (PPI) and monochromic patterns of 33,000 line pairs per inch with 100% transfer yield. The perovskite light-emitting diodes (PeLEDs) with transfer-printed active layers exhibit outstanding electroluminescence characteristics with remarkable external quantum efficiencies (15.3, 14.8, and 2.5% for red, green, and blue, respectively), which are high compared to the printed PeLEDs reported to date. Furthermore, double-layer transfer printing enables the fabrication of ultrathin multicolor PeLEDs that can operate on curvilinear surfaces, including human skin, under various mechanical deformations. These results highlight that PeLEDs are promising for high-definition full-color wearable displays.

13.
ACS Nano ; 16(11): 18830-18837, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36264779

RESUMO

The oxygen reduction reaction is essential for fuel cells and metal-air batteries in renewable energy technologies. Developing platinum-group-metal (PGM)-free catalysts with comparable catalytic performance is highly desired for cost efficiency. Here, we report a tin (Sn) nanocluster confined catalyst for the electrochemical oxygen reduction. The catalyst was fabricated by confining 1-1.5 nm sized Sn nanoclusters in situ in microporous nitrogen-doped carbon polyhedra (SnxNC) with an average pore size of 0.7 nm. SnxNC exhibited high catalytic performance in acidic media, including positive onset and half-wave potentials, comparable to those of the state-of-the-art Pt/C and far exceeding those of the Sn single-atom catalyst. Combined structural and theoretical analyses reveal that the confined Sn nanoclusters, which have favorable oxygen adsorption behaviors, are responsible for the high catalytic performance, but not Sn single atoms.

14.
Sci Adv ; 8(37): eabp8751, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103528

RESUMO

Single-ion conductors have garnered attention in energy storage systems as a promising alternative to currently widespread electrolytes that allow migration of cations and anions. However, ion transport phenomena of most single-ion conductors are affected by strong ion (e.g., Li+)-ion (immobilized anionic domains) interactions and tortuous paths, which pose an obstacle to achieving performance breakthroughs. Here, we present a Li+-centered G-quadruplex (LiGQ) as a class of single-ion conductor based on directional Li+ slippage at the microscopic level. A guanine derivative with liquid crystalline moieties is self-assembled to form a hexagonal ordered columnar structure in the LiGQ, thereby yielding one-dimensional central channels that provide weak ion-dipole interaction and straightforward ionic pathways. The LiGQ exhibits weak Li+ binding energy and low activation energy for ion conduction, verifying its viability as a new electrolyte design.

15.
Adv Mater ; 34(43): e2205504, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985813

RESUMO

Electroluminescence from quantum dots (QDs) is a suitable photon source for futuristic displays offering hyper-realistic images with free-form factors. Accordingly, a nondestructive and scalable process capable of rendering multicolored QD patterns on a scale of several micrometers needs to be established. Here, nondestructive direct photopatterning for heavy-metal-free QDs is reported using branched light-driven ligand crosslinkers (LiXers) containing multiple azide units. The branched LiXers effectively interlock QD films via photo-crosslinking native aliphatic QD surface ligands without compromising the intrinsic optoelectronic properties of QDs. Using branched LiXers with six sterically engineered azide units, RGB QD patterns are achieved on the micrometer scale. The photo-crosslinking process does not affect the photoluminescence and electroluminescence characteristics of QDs and extends the device lifetime. This nondestructive method can be readily adapted to industrial processes and make an immediate impact on display technologies, as it uses widely available photolithography facilities and high-quality heavy-metal-free QDs with aliphatic ligands.

16.
Adv Mater ; 34(29): e2202137, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35502520

RESUMO

The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium-ion batteries (SIBs). Herein, an in-depth phase analysis of developed Na1-x TMO2 cathode materials, Na0.76 Ni0.20 Fe0.40 Mn0.40 O2 with P2- and O3-type phases (NFMO-P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed-phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first-principles calculations support the evidence of the formation of a binary NFMO-P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O'3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P- and O-type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5-4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high-voltage cathode materials for SIBs.

17.
RSC Adv ; 12(14): 8385-8393, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424813

RESUMO

We assemble a film of a phosphocholine-based lipid and a crystalline conjugated polymer using hydrophobic interactions between the alkyl tails of the lipid and alkyl side chains of the polymer, and demonstrated its selective gas adsorption properties and the polymer's improved light absorption properties. We show that a strong attractive interaction between the polar lipid heads and CO2 was responsible for 6 times more CO2 being adsorbed onto the assembly than N2, and that with repeated CO2 adsorption and vacuuming procedures, the assembly structures of the lipid-polymer assembly were irreversibly changed, as demonstrated by in situ grazing-incidence X-ray diffraction during the gas adsorption and desorption. Despite the disruption of the lipid structure caused by adsorbed polar gas molecules on polar head groups, gas adsorption could promote orderly alkyl chain packing by inducing compressive strain, resulting in enhanced electron delocalization of conjugated backbones and bathochromic light absorption. The findings suggest that merging the structures of the crystalline functional polymer and lipid bilayer is a viable option for solar energy-converting systems that use conjugated polymers as a light harvester and the polar heads as CO2-capturing sites.

18.
Nat Commun ; 13(1): 1942, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410458

RESUMO

Manganese oxides are ubiquitous marine minerals which are redox sensitive. As major components of manganese nodules found on the ocean floor, birnessite and buserite have been known to be two distinct water-containing minerals with manganese octahedral interlayer separations of ~7 Å and ~10 Å, respectively. We show here that buserite is a super-hydrated birnessite formed near 5 km depth conditions. As one of the most hydrous minerals containing ca. 34.5 wt. % water, super-hydrated birnessite, i.e., buserite, remains stable up to ca. 70 km depth conditions, where it transforms into manganite by releasing ca. 24.3 wt. % water. Subsequent transformations to hausmannite and pyrochroite occur near 100 km and 120 km depths, respectively, concomitant with a progressive reduction of Mn4+ to Mn2+. Our work forwards an abiotic geochemical cycle of manganese minerals in subduction and/or other aqueous terrestrial environments, with implications for water storage and cycling, and the redox capacity of the region.

19.
Langmuir ; 38(12): 3765-3774, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302783

RESUMO

We demonstrate a facile method to fabricate a recyclable cell-alignment scaffold using nanogrooves based on sublimable liquid crystal (LC) material. Randomly and uniaxially arranged smectic LC structures are obtained, followed by sublimation and recondensation processes, which directly produce periodic nanogrooves with dimensions of a couple of hundreds of nanometers. After treatment with osmium tetroxide (OsO4), the nanogroove can serve as a scaffold to efficiently induce directed cell growth without causing cytotoxicity, and it can be used repeatedly. Together, various cell types are applied to the nanogroove, proving the scaffold's broad applicability. Depending on the nanotopography of the LC structures, cells exhibit different morphologies and gene expression patterns, compared to cells on standard glass substrates, according to microscopic observation and qPCR. Furthermore, cell sheets can be formed, which consist of oriented cells that can be repeatedly formed and transferred to other substrates, while maintaining its organization. We believe that our cell-aligning scaffold may pave the way for the soft material field to bioengineering, which can involve fundamentals in cell behavior and function, as well as applications for regenerative medicine.


Assuntos
Cristais Líquidos , Nanoestruturas , Cristais Líquidos/química , Nanoestruturas/toxicidade , Tetróxido de Ósmio
20.
Nat Nanotechnol ; 17(4): 403-407, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35145285

RESUMO

Single-atom catalysts have recently attracted considerable attention because of their highly efficient metal utilization and unique properties. Finding a green, facile method to synthesize them is key to their widespread commercialization. Here we show that single-atom catalysts (including iron, cobalt, nickel and copper) can be prepared via a top-down abrasion method, in which the bulk metal is directly atomized onto different supports, such as carbon frameworks, oxides and nitrides. The level of metal loading can be easily tuned by changing the abrasion rate. No synthetic chemicals, solvents or even water were used in the process and no by-products or waste were generated. The underlying reaction mechanism involves the mechanochemical force in situ generating defects on the supports, then trapping and stably sequestering atomized metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA