Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0034124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742905

RESUMO

Cell culture-based screening of a chemical library identified diphenoxylate as an antiviral agent against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The observed 50% effective concentrations ranged between 1.4 and 4.9 µM against the original wild-type strain and its variants. Time-of-addition experiments indicated that diphenoxylate is an entry blocker targeting a host factor involved in viral infection. Fluorescence microscopic analysis visualized that diphenoxylate prevented SARS-CoV-2 particles from penetrating the cell membrane and also impaired endo-lysosomal acidification. Diphenoxylate exhibited a synergistic inhibitory effect on SARS-CoV-2 infection in human lung epithelial Calu-3 cells when combined with a transmembrane serine protease 2 (TMPRSS2) inhibitor, nafamostat. This synergy suggested that efficient antiviral activity is achieved by blocking both TMPRSS2-mediated early and endosome-mediated late SARS-CoV-2 entry pathways. The antiviral efficacy of diphenoxylate against SARS-CoV-2 was reproducible in a human tonsil organoids system. In a transgenic mouse model expressing the obligate SARS-CoV-2 receptor, human angiotensin-converting enzyme 2, intranasal administration of diphenoxylate (10 mg/kg/day) significantly reduced the viral RNA copy number in the lungs by 70% on day 3. This study underscores that diphenoxylate represents a promising core scaffold, warranting further exploration for chemical modifications aimed at developing a new class of clinically effective antiviral drugs against SARS-CoV-2.

3.
ACS Appl Mater Interfaces ; 15(39): 45539-45548, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37713436

RESUMO

Fluorescent dyes have garnered significant attention as theranostic platforms owing to their inherent characteristics. In this study, we present the discovery of Medical Fluorophore 33 (MF33), a novel and potent theranostic agent with a phenaleno-isoquinolinium salt structure that can serve as a cancer therapeutic strategy. The synthesis of MF33 is readily achievable through a simple Rh(III)-catalyzed reaction. Moreover, MF33 displayed strong fluorescence signals, excellent microsomal stability, and high biocompatibility in vivo. It induces significant apoptosis in cancer cells via the p53/p21/caspase-3 signaling pathway, leading to selective cytotoxicity in various cancer cells. In vivo fluorescence imaging with MF33 enabled the visualization of sentinel lymph nodes in living mice. Notably, repeated intraperitoneal administration of MF33 resulted in antitumor activity in mice with colorectal cancer. Collectively, our findings suggest that phenaleno-isoquinolinium salt-based MF33 is a viable theranostic agent for biomedical imaging and cancer treatment.


Assuntos
Corantes Fluorescentes , Neoplasias , Animais , Camundongos , Corantes Fluorescentes/química , Medicina de Precisão , Estudos de Viabilidade , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
4.
Appl Microsc ; 50(1): 22, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33580423

RESUMO

In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

5.
Appl Microsc ; 49(1): 6, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-33580325

RESUMO

Focused ion beam method, which has excellent capabilities such as local deposition and selective etching, is widely used for micro-electromechanical system (MEMS)-based in situ transmission electron microscopy (TEM) sample fabrication. Among the MEMS chips in which one can apply various external stimuli, the electrical MEMS chips require connection between the TEM sample and the electrodes in MEMS chip, and a connected deposition material with low electrical resistance is required to apply the electrical signal. Therefore, in this study, we introduce an optimized condition by comparing the electrical resistance for C-, Pt-, and W- ion beam induced deposition (IBID) at 30 kV and electron beam induced deposition (EBID) at 1 and 5 kV. The W-IBID at 30 kV with the lowest electrical resistance of about 30 Ω shows better electrical properties than C- and Pt-IBID electrodes. The W-EBID at 1 kV has lower electrical resistance than that at 5 kV; thus, confirming its potential as an electrode. Therefore, for the materials that are susceptible to ion beam damage, it is recommended to fabricate electrical connections using W-EBID at 1 kV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA