Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400622, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956831

RESUMO

The introduction of phosphorous (P), and oxygen (O) heteroatoms in the natural honeydew chemical structure is one of the most effective, and practical approaches to synthesizing activated carbon for possible high-performance energy storage applications. The performance metrics of supercapacitors depend on surface functional groups and high-surface-area electrodes that can play a dominant role in areas that require high-power applications. Here, we report a phosphorous and oxygen co-doped honeydew peel-derived activated carbon (HDP-AC) electrode with low surface area for supercapacitor via H3PO4 activation. This activator form phosphorylation with cellulose fibers in the HDP. The formation of heteroatoms stabilizes the cellulose structure by preventing the formation of levoglucosan (C6H10O5), a cellulose combustion product, which would otherwise offer a pathway for a substantial degradation of cellulose into volatile products. Therefore, heteroatom doping has proved effective, in improving the electrochemical properties.  The improved performance is attributed to the high phosphorous doping with a hierarchical porous structure, which enables the transportation of ions at higher current rates. The high specific capacitance of 486, and 478 F/g at 0.6, and 1.3 A/g in 1M H2SO4 electrolyte with a prominent retention of 98% is observed for 2M H3PO4 having an impregnation ratio of 1:4.

2.
Langmuir ; 39(50): 18175-18186, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047629

RESUMO

Transition-metal dichalcogenides (TMDs) have attracted increasing attention in fundamental studies and technological applications owing to their atomically thin thickness, expanded interlayer distance, motif band gap, and phase-transition ability. Even though TMDs have a wide variety of material assets from semiconductor to semimetallic to metallic, the materials with fixed features may not show excellence for precise application. As a result of exclusive crystalline polymorphs, physical and chemical assets of TMDs can be efficiently modified via various approaches of interface nanoarchitectonics, including heteroatom doping, heterostructure, phase engineering, reducing size, alloying, and hybridization. With modified properties, TMDs become interesting materials in diverse fields, including catalysis, energy, electronics, transistors, and optoelectronics.

3.
ChemSusChem ; 16(21): e202300730, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485991

RESUMO

Improving the energy share of renewable energy technologies is the only solution to reduce greenhouse gas emissions and air pollution. The high-performing green battery energy storage technologies are critical for storing energy to address the intermittent nature of renewable energy resources. In recent years, aqueous batteries, particularly Zn-ion batteries (ZIBs), have achieved and shown great potential for stationary energy storage systems owing to their low cost and safer operation. However, the practical applications of the ZIBs have significantly been impeded due to the gap between the breakthroughs achieved in academic research and industrial developments. The present review discusses the ZIB's advantages, possibilities, and shortcomings for stationary energy storage systems. The Review begins with a brief introduction to the ZIBs and their charge storage mechanisms based on the structural properties of cathode materials. The scientific and technical challenges that obstruct the commercialization of the ZIBs are discussed in detail concerning their impact on accelerating the utilization of the ZIBs for real-life applications. The final section highlights the outlook on research in this flourishing field.

4.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363396

RESUMO

Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.

5.
Small ; 18(20): e2200248, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441451

RESUMO

Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochemical devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2 Se (NiCuSe) positive electrode and FeSe nanoparticles negative electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent electrical conductivity results in superior electrochemical features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy density of 87.6 Wh kg-1 at a specific power density of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems.

6.
J Colloid Interface Sci ; 608(Pt 1): 711-719, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634546

RESUMO

Transition metal selenides (TMS) have excellent research prospects and significant attention in supercapacitors (SCs) owing to their high electrical conductivity, superior electrochemical activity and excellent structural stability. However, the commercial utilization of TMS remains challenge due to their elaborate synthesis. Present study designed a hierarchical cobalt selenide (CoSe2) nanowire array on Ni-foam to serve as a positive electrode for asymmetric SCs (ASCs). The nanowires-like morphology of CoSe2 was highly advantageous for SCs, as it offered enhanced electrical conductivity, plenty of surface sites, and short ion diffusion. The as-obtained, CoSe2 nanowire electrode demonstrated outstanding electrochemical features, with an areal capacity of 1.08 mAh cm-2 at 3 mA cm-2, high-rate performance (69.5 % at 50 mA cm-2), as well as outstanding stability after 10,000 cycles. The iron titanium nitride@nitrogen-doped graphene (Fe-TiN@NG) was prepared as a negative electrode to construct the ASCs cell. The obtained ASCs cell illustrated an energy density of 91.8 W h kg-1 at a power density of 281.4 W kg-1 and capacity retention of 94.6% over 10,000 cycles. The overall results provide a more efficient strategy to develop redox-ambitious active materials with a high capacity for advanced energy-storage systems.

7.
Nanoscale ; 12(41): 21280-21290, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33063794

RESUMO

Two-dimensional (2D) transition metal dichalcogenides have attracted vibrant interest for future solid-state device applications due to their unique properties. However, it is challenging to realize 2D material based high performance complementary devices due to the stubborn Fermi level pinning effect and the lack of facile doping techniques. In this paper, we reported a hybrid Gr/Ni contact to WS2, which can switch carrier types from n-type to p-type in WS2. The unorthodox polarity transition is attributed to the natural p-doping of graphene with Ni adsorption and the alleviation of Fermi level pinning in WS2. Furthermore, we realized asymmetric Ni and Gr/Ni hybrid contacts to a multilayer WS2 device, and we observed synergistic p-n diode characteristics with excellent current rectification exceeding 104, and a near unity ideality factor of 1.1 (1.6) at a temperature of 4.5 K (300 K). Lastly, our WS2 p-n device exhibits high performance photovoltaic ability with a maximum photoresponsivity of 4 × 104 A W-1 at 532 nm wavelength, that is 108 times higher than that of graphene and 50 times better than that of the monolayer MoS2 photodetector. This doping-free carrier type modulation technique will pave the way to realize high performance complementary electronics and optoelectronic devices based on 2D materials.

8.
Nanoscale ; 12(35): 18171-18179, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32856027

RESUMO

A two-dimensional (2D) layered material-based p-n diode is an essential element in the modern semiconductor industry for facilitating the miniaturization and structural flexibility of devices with high efficiency for future optoelectronic and electronic applications. Planar devices constructed previously required a complicated device structure using a photoresist, as they needed to consider non-abrupt interfaces. Here, we demonstrated a WSe2 based lateral homojunction diode obtained by applying a photo-induced effect in BN/WSe2 heterostructures upon illumination via visible and deep UV light, which represents a stable and flexible charge doping technique. We have discovered that with this technique, a field-effect transistor (FET) based on p-type WSe2 is inverted to n-WSe2 so that a high electron mobility is maintained in the h-BN/n-WSe2 heterostructures. To confirm this hypothesis, we deduced the work function values of p-WSe2 and n-WSe2 FETs by conducting Kelvin probe force microscopy (KPFM) measurements, which revealed the decline of the Fermi level from 5.07 (p-WSe2) to 4.21 eV (n-WSe2). The contact potential difference (CPD) between doped and undoped junctions was found to be 165 meV. We employed ohmic metal contacts for the planar homojunction diode by utilizing an ionic liquid gate to achieve a diode rectification ratio up to ∼105 with n = 1. An exceptional photovoltaic performance is also observed. The presence of a built-in potential in our devices leads to an open-circuit voltage (Voc) and short-circuit current (Isc) without an external electric field. This effective doping technique is promising to advance the concept of preparing future functional devices.

9.
Dalton Trans ; 49(4): 1157-1166, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31895395

RESUMO

Electrode materials exhibiting nanostructural design, high surface area, tunable pore size, and efficient ion diffusion/transportation are essential for achieving improved electrochemical performance. In this study, we successfully prepared cobalt phosphide and cobalt nanoparticles embedded into nitrogen-doped nanoporous carbon (CoP-CoNC/CC) using a simple precipitation method followed by pyrolysis-phosphatization. Subsequently, we employed CoP-CoNC/CC as the electrode for supercapacitor applications. Notably, the resultant CoP-CoNC/CC displayed a high surface area with tunable porosity. Based on the benefits of the CoP in CoNC/CC, improved electrochemical performance was achieved with a specific capacitance of 975 F g-1 at 1 mA cm-2 in a 2 M KOH electrolyte. The assembled hybrid supercapacitor using CoP-CoNC/CC (positive electrode) and activated carbon (AC) (negative electrode) exhibited a specific capacitance of 144 F g-1, a specific energy of 39.2 W h kg-1 at 1960 W kg-1 specific power, with better cyclic stability. The higher performance can be attributed to the synergetic effect between CoP, Co metal, and the nitrogen-doped nanoporous carbon in three-dimensional carbon cloth (CC). These excellent properties make CoP-CoNC/CC a promising electrode for developing future energy-storage devices.

10.
ChemSusChem ; 13(1): 11-38, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31605458

RESUMO

Current progress in the advancement of energy-storage devices is the most important factor that will allow the scientific community to develop resources to meet the global energy demands of the 21st century. Nanostructured materials can be used as effective electrodes for energy-storage devices because they offer various promising features, including high surface-to-volume ratios, exceptional charge-transport features, and good physicochemical properties. Until now, the successful research frontrunners have focused on the preparation of positive electrode materials for energy-storage applications; nevertheless, the electrochemical performance of negative electrodes is less frequently reported. This review mainly focuses on the current progress in the development of tungsten oxide-based electrodes for energy-storage applications, primarily supercapacitors (SCs) and batteries. Tungsten is found in various stoichiometric and nonstoichiometric oxides. Among the different tungsten oxide materials, tungsten trioxide (WO3 ) has been intensively investigated as an electrode material for different applications because of its excellent charge-transport features, unique physicochemical properties, and good resistance to corrosion. Various WO3 composites, such as WO3 /carbon, WO3 /polymers, WO3 /metal oxides, and tungsten-based binary metal oxides, have been used for application in SCs and batteries. However, pristine WO3 suffers from a relatively low specific surface area and low energy density. Therefore, it is crucial to thoroughly summarize recent progress in utilizing WO3 -based materials from various perspectives to enhance their performance. Herein, the potential- and pH-dependent behavior of tungsten in aqueous media is discussed. Recent progress in the advancement of nanostructured WO3 and tungsten oxide-based composites, along with related charge-storage mechanisms and their electrochemical performances in SCs and batteries, is systematically summarized. Finally, remarks are made on future research challenges and the prospect of using tungsten oxide-based materials to further upgrade energy-storage devices.

11.
ACS Appl Mater Interfaces ; 10(19): 16636-16649, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687716

RESUMO

A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO2) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO2/flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO4/h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO4 gel electrolyte. Highly active surface areas of α-MnO2 (75 m2 g-1) and h-CuS (83 m2 g-1) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g-1 at 5 mV s-1, energy density of 18.9 Wh kg-1, and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.

12.
J Colloid Interface Sci ; 498: 202-209, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28324726

RESUMO

The mesoporous nanostructured metal oxides have a lot of capabilities to upsurge the energy storing capacity of the supercapacitor. In present work, different nanostructured morphologies of MnO2 have been successfully fabricated on flexible carbon cloth by simple but capable hydrothermal method at different deposition temperatures. The deposition temperature has strong influence on reaction kinetics, which subsequently alters the morphology and electrochemical performance. Among different nanostructured MnO2 thin films, the mesoporous weirds composed thin film obtained at temperature of 453K exhibits excellent physical and electrochemical features for supercapacitor application. The weirds composed MnO2 thin film exhibits specific surface area of 109m2g-1, high specific capacitance of 595Fg-1 with areal capacitance of 4.16Fcm-2 at a scan rate of 5mVs-1 and high specific energy of 56.32Whkg-1. In addition to this, MnO2 weirds attain capacity retention of 87 % over 2000 CV cycles, representing better cycling stability. The enhanced electrochemical performance could be ascribed to direct growth of highly porous MnO2 weirds on carbon cloth which provide more pathways for easy diffusion of electrolyte into the interior of electroactive material. The as-fabricated electrode with improved performance could be ascribed as a potential electrode material for energy storage devices.

13.
J Colloid Interface Sci ; 483: 261-267, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565957

RESUMO

To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA