Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114359, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870015

RESUMO

There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly affects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing macroscale brain state dynamics.


Assuntos
Imageamento por Ressonância Magnética , Animais , Núcleo Basal de Meynert/fisiologia , Núcleo Basal de Meynert/metabolismo , Acetilcolina/metabolismo , Macaca mulatta , Masculino , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/metabolismo , Córtex Cerebral/fisiologia , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Modelos Neurológicos
2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915591

RESUMO

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

3.
Neuron ; 112(10): 1611-1625, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754373

RESUMO

Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.


Assuntos
Estado de Consciência , Tálamo , Tálamo/fisiologia , Estado de Consciência/fisiologia , Humanos , Animais , Vias Neurais/fisiologia , Neurônios/fisiologia , Córtex Cerebral/fisiologia , Vigília/fisiologia
4.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352516

RESUMO

Despite their widespread use, we have limited knowledge of the mechanisms by which sedatives mediate their effects on brain-wide networks. This is, in part, due to the technical challenge of observing activity across large populations of neurons in normal and sedated brains. In this study, we examined the effects of the sedative dexmedetomidine, and its antagonist atipamezole, on spontaneous brain dynamics and auditory processing in zebrafish larvae. Our brain-wide, cellular-resolution calcium imaging reveals, for the first time, the brain regions involved in these network-scale dynamics and the individual neurons that are affected within those regions. Further analysis reveals a variety of dynamic changes in the brain at baseline, including marked reductions in spontaneous activity, correlation, and variance. The reductions in activity and variance represent a "quieter" brain state during sedation, an effect that causes highly correlated evoked activity in the auditory system to stand out more than it does in un-sedated brains. We also observe a reduction in auditory response latencies across the brain during sedation, suggesting that the removal of spontaneous activity leaves the core auditory pathway free of impingement from other non-auditory information. Finally, we describe a less dynamic brain-wide network during sedation, with a higher energy barrier and a lower probability of brain state transitions during sedation. In total, our brain-wide, cellular-resolution analysis shows that sedation leads to quieter, more stable, and less dynamic brain, and that against this background, responses across the auditory processing pathway become sharper and more prominent. Significance Statement: Animals' brain states constantly fluctuate in response to their environment and context, leading to changes in perception and behavioral choices. Alterations in perception, sensorimotor gating, and behavioral selection are hallmarks of numerous neuropsychiatric disorders, but the circuit- and network-level underpinnings of these alterations are poorly understood.Pharmacological sedation alters perception and responsiveness and provides a controlled and repeatable manipulation for studying brain states and their underlying circuitry. Here, we show that sedation of larval zebrafish with dexmedetomidine reduces brain-wide spontaneous activity and locomotion but leaves portions of brain-wide auditory processing and behavior intact. We describe and computationally model changes at the levels of individual neurons, local circuits, and brain-wide networks that lead to altered brain states and sensory processing during sedation.

5.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352527

RESUMO

Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.

6.
Elife ; 132024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180472

RESUMO

Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.


Assuntos
Estado de Consciência , Alucinógenos , Humanos , Ratos , Camundongos , Animais , Córtex Cerebral/fisiologia , Inconsciência/induzido quimicamente , Tálamo/fisiologia , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA