Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(28): 19310-19316, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954742

RESUMO

Polymers possessing saturated fused polycycles in the main chain repeating unit have been underexplored despite their potential utility based on their expected properties such as high rigidity, chemical resistance, transparency, and thermal stability. In this regard, herein, we developed a radical stitching polymerization of styryl vinyl ketones for the synthesis of polyketones possessing saturated fused bicyclic repeating units. The polymerization proceeded smoothly with a high degree of stitching efficiency in a chain-growth manner under free radical conditions. This method was further extended to the alternating copolymerization of styryl vinyl ketones and 1-styryl-2-vinylbenzenes, representing the first alternating stitching copolymerization of two different monomers. The obtained polymers were found to show promising thermal properties and high transparency in the visible light region.

2.
Chem Commun (Camb) ; 60(54): 6921-6924, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38884153

RESUMO

A KOtBu-catalyzed ring-opening gem-silylborylation of cyclopropenes with silylboronates has been developed for the synthesis of (1-silyl)allylboronates, a useful class of compounds in organic synthesis. The reaction proceeds with high selectivity under mild conditions, and the reaction mechanism has been theoretically investigated using DFT calculations.

3.
J Am Chem Soc ; 146(4): 2789-2797, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236061

RESUMO

Dearomative photocycloaddition of monocyclic arenes is an appealing strategy for comprehending the concept of "escape from flatland". This brings the replacement of readily available planar aromatic hydrocarbon units with a 3D fused bicyclic core with sp3-enriched carbon units. Herein, we outline an intermolecular approach for the dearomative photocycloaddition of phenols. In order to circumvent the ground-state aromaticity and to construct conformationally restrained building blocks, bicyclo[1.1.0]butanes were chosen as coupling partners. This dearomative approach renders straightforward access to a bicyclo[2.1.1]hexane unit fused to a cyclic enone moiety, which further contributed as a synthetic linchpin for postmodifications. Mechanistic experiment advocates for a plausible onset from both the reactants, depending on the redox potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA