Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668166

RESUMO

Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.

2.
Gels ; 9(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504455

RESUMO

Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) integrated with hydrogels have been developed in the present investigation. SLNs developed by microemulsion techniques were found ellipsoidal with 273.1 nm particle size and -0.15 mV zeta potential. Entrapment and total drug content of LEF-SLNs were obtained as 65.25 ± 0.95% and 93.12 ± 1.72%, respectively. FTIR and XRD validated the successful fabrication of LEF-SLNs. The higher stability of LEF-SLNs (p < 0.001) compared to pure drug solution was observed in photostability studies. Additionally, in vitro anti-inflammatory activity of LEF-SLNs showed good potential in comparison to pure drugs. Further, prepared LEF-SLNs loaded hydrogel showed ideal rheology, texture, occlusion, and spreadability for topical drug delivery. In vitro release from LEF-SLN hydrogel was found to follow the Korsmeyer-Peppas model. To assess the skin safety of fabricated lipidic formulation, irritation potential was performed employing the HET-CAM technique. In conclusion, the findings of this investigation demonstrated that LEF-SLN hydrogel is capable of enhancing the photostability of the entrapped drug while reducing its skin irritation with improved topical delivery characteristics.

3.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903944

RESUMO

Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18ß-glycyrrhetinic acid (18ßGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18ßGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18ßGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18ßGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18ßGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18ßGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.

4.
Gels ; 9(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36975662

RESUMO

Poor aqueous solubility besides extensive hepatic first effect significantly decreases the oral absorption of levosulpiride, which in turn minimizes its therapeutic effectiveness. Niosomes have been extensively investigated as a transdermal vesicular nanocarrier to increase the delivery of low permeable compounds into and across the skin. This research work was to design, develop and optimize levosulpiride-loaded niosomal gel and to evaluate its prospects for transdermal delivery. The Box-Behnken design was used to optimize niosomes by analyzing the impact of three factors (cholesterol; X1, Span 40; X2, and sonication time; X3) on the responses (particle size, Y1, and entrapment efficiency, Y2). Optimized formulation (NC) was incorporated into gel and evaluated for pharmaceutical properties, drug release study, ex vivo permeation, and in vivo absorption. The design experiment data suggest that all three independent variables influence both response variables significantly (p < 0.01). Pharmaceutical characteristics of NC vesicles showed the absence of drug excipient interaction, nanosize (~102.2 nm), narrow distribution (~0.218), adequate zeta potential (-49.9 mV), and spherical shape, which are suitable for transdermal therapy. The levosulpiride release rates varied significantly (p < 0.01) between niosomal gel formulation and control. Greater flux (p < 0.01) was observed with levosulpiride-loaded niosomal gel than with control gel formulation. Indeed, the drug plasma profile of niosomal gel was significantly higher (p < 0.005), with ~3 folds higher Cmax and greater bioavailability (~500% higher; p < 0.0001) than its counterpart. Overall, these findings imply that the use of an optimized niosomal gel formulation can increase the therapeutic efficacy of levosulpiride and may represent a promising alternative to conventional therapy.

5.
Gels ; 9(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826300

RESUMO

Dolutegravir's therapeutic effectiveness in the management of neuroAIDS is mainly limited by its failure to cross the blood-brain barrier. However, lipid-based nanovesicles such as nanoemulsions have demonstrated their potential for the brain targeting of various drugs by intranasal delivery. Thus, the purpose of this study was to develop a Dolutegravir-loaded nanoemulsion-based in situ gel and evaluate its prospective for brain targeting by intranasal delivery. Dolutegravir-loaded nanoemulsions were prepared using dill oil, Tween® 80, and Transcutol® P. Optimization of the nanoemulsion particle size and drug release was carried out using a simplex lattice design. Formulations (F1-F7 and B1-B6) were assessed for various pharmaceutical characteristics. Ex vivo permeation and ciliotoxicity studies of selected in situ gels (B1) were conducted using sheep nasal mucosa. Drug targeting to the brain was assessed in vivo in rats following the nasal delivery of B1. The composition of oil, surfactant, and cosurfactant significantly (p < 0.05) influenced the dependent variables (particle size and % of drug release in 8 h). Formulation B1 exhibits pharmaceutical characteristics that are ideal for intranasal delivery. The mucosal steady-state flux noticed with BI was significantly greater (p < 0.005) than for the control gel. A histopathology of nasal mucosa treated with BI showed no signs of toxicity or cellular damage. Intranasal administration of B1 resulted in greater Cmax (~six-fold, p < 0.0001) and AUC0-α (~five-fold, p < 0.0001), and decreased Tmax (1 h) values in the brain, compared to intravenous administration. Meantime, the drug level in the plasma was relatively low, suggesting less systemic exposure to Dolutegravir through intranasal delivery. In summary, the promising data observed here signifies the prospective of B1 to enhance the brain targeting of Dolutegravir by intranasal delivery and it could be used as a feasible and practicable strategy for the management of neuroAIDS.

6.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500833

RESUMO

Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into ß-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (ß-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 µg/mL) in comparison to SES (106 µg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.

7.
Pharmaceutics ; 14(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432670

RESUMO

Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.

8.
Molecules ; 27(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36364209

RESUMO

The activity of the P-glycoprotein (P-gp) transporter encoded by the ABCB1 gene confers resistance to anticancer drugs and contributes to cancer-related mortality and morbidity. Recent studies revealed the cytotoxic effects of the endogenous dipeptide carnosine. The current study aimed to investigate the role of carnosine as a potential inhibitor of P-gp activity. We used molecular docking and molecular dynamic simulations to study the possible binding and stability of carnosine-P-gp interactions compared with verapamil. In vitro assays using doxorubicin-resistant NCI/ADR-RES cells were established to test the effects of carnosine (10-300 µM) on P-gp activity by the rhodamine-123 efflux assay and its effect on cell viability and doxorubicin-induced cytotoxicity. Verapamil (10 µM) was used as a positive control. The results showed that carnosine binding depends mainly on hydrogen bonding with GLU875, GLN946, and ALA871, with a higher average Hbond than verapamil. Carnosine showed significant but weaker than verapamil-induced rhodamine-123 accumulation. Carnosine and verapamil similarly inhibited cell viability. However, verapamil showed a more significant potentiating effect on doxorubicin-induced cytotoxicity than a weaker effect of carnosine at 300 µM. These results suggest that carnosine inhibits P-gp activity and potentiates doxorubicin-induced cytotoxicity at higher concentrations. Carnosine might be a helpful lead compound in the fight against multidrug-resistant cancers.


Assuntos
Antineoplásicos , Carnosina , Resistência a Múltiplos Medicamentos , Carnosina/farmacologia , Carnosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Rodamina 123/farmacologia , Verapamil/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia
9.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296501

RESUMO

The 4-allyl guaiacol is a natural phenolic molecule that has been widely studied for its antioxidant capacity against reactive-oxygen-species-mediated cellular damage. Therefore, we hypothesized that concomitant use of an antioxidant and NSAID may decrease the risk of gastrointestinal toxicity and make the therapy safer. To address the gastrointestinal toxicity of conventional NSAIDs, a new S-naproxen-4-allyl guaiacol chimera (MAS-1696) was computationally developed, chemically synthesized, and tested for anti-inflammatory effectiveness and gastrointestinal safety. The inhibitory potency of MAS-1696 tested against cyclooxygenase-2 (COX2), 15-lipoxygenase-2 (15-LOX2), and lipoxygenase-5 (5-LOX) in vitro revealed a stronger inhibition of COX2. Furthermore, the MAS-1696 chimera increased the COX selectivity index by 23% as compared to the parent compound naproxen, implying higher efficacy and gastric safety. In vivo data showed that MAS-1696 was less likely to cause gastrointestinal harm than naproxen while also exerting anti-inflammatory and analgesic effects equivalent to or superior to naproxen. In conclusion, MAS-1696 is orally active, bio-labile, and crystalline, making it a medication that may be administered orally.


Assuntos
Gastroenteropatias , Naproxeno , Humanos , Anti-Inflamatórios , Anti-Inflamatórios não Esteroides/química , Antioxidantes , Araquidonato 15-Lipoxigenase , Ciclo-Oxigenase 2 , Gastroenteropatias/tratamento farmacológico , Guaiacol , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Oxigênio
10.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139761

RESUMO

Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.

11.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015129

RESUMO

Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)'s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions.

12.
Antibiotics (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884084

RESUMO

A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a-3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k-3m. Thus, compounds 3k-3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.

13.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808682

RESUMO

Presently, the nanotechnology approach has gained a great concern in the media of drug delivery. Gold nanoparticles (Au-NPs) specially having a non-spherical structure, such as gold nanorods (GNR), are attracting much interest as antibacterial agent and many other medical fields. The aim of the current investigation was to characterize Au-NPs and investigate their antimicrobial and wound healing efficacy in diabetic animals. MATERIAL AND METHODS: Au-NPs were characterized using a UV-Vis spectrophotometer, estimating their particle size, polydispersity (PDI), and assessing their morphological characters. Further, Au-NPs were estimated for their antibacterial and antifungal behavior. Ultimately, in vivo activity of Au-NPs was evaluated against excision wound healing in STZ-induced diabetic animals. RESULTS: Au-NPs were found to show maximum absorption at 520 nm. They exhibited a particle size of 82.57 nm with a PDI value of 0.323. Additionally, they exhibited good antimicrobial activity against different bacterial strains. Topical application of Au-NPs caused a significantly increased percentage of wound area reduction, lesser time needed for epithelialization, and augmented hydroxyproline, collagen, and hexosamine levels demonstrating enhanced healing processes. Furthermore, Au-NPs displayed a significant intensification in angiogenesis-related factors (HIF-1α, TGF-ß1, and VEGF), and antioxidant enzymes activities (CAT, SOD, GPx) as well as mitigated inflammatory mediators IL-6, IL-1ß, TNF-α, and NF-κB) and lipid peroxidation (MDA). CONCLUSION: Au-NPs exhibited proper particle size, and rod-shaped particles, with efficient antimicrobial behavior against different bacterial strains. Furthermore, Au-NPs demonstrated a promising wound healing activity in STZ-induced diabetic animals.

14.
J Clin Med ; 11(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683390

RESUMO

Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.

15.
Gels ; 8(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35735686

RESUMO

The clinical efficacy of antiretroviral therapy in NeuroAIDS is primarily limited by the low perfusion of the drug to the brain. The objective of the current investigation was to design and develop an in situ mucoadhesive gel loaded with darunavir to assess the feasibility of brain targeting through the intranasal route. Preliminary batches (F1−F9) were prepared and evaluated for various pharmaceutical characteristics. A full factorial design of the experiment was applied to optimize and assess the effect of two influencing variables (Carbopol 934P (X1) and Poloxamer 407 (X2)) on the response effects (gelation temperature (Y1) and % drug release (Y2) at 8 h). The data demonstrate that both influencing variables affect the response variables significantly (p < 0.05). The optimized formulation (F7) exhibited favorable rheological properties, adequate mucoadhesion, sustained drug release, and greater permeation across the nasal mucosa. An in vitro ciliotoxicity study confirms the nontoxicity of the optimized in situ gel (D7) on the nasal mucosa. An in vivo pharmacokinetic study in rats was performed to assess drug targeting to the brain following the nasal application of the selected in situ gel (D7). Significantly higher (p < 0.0001) Cmax (~4-fold) and AUC0-α (~3.5-fold) values were noticed in the brain after nasal application, as compared to the intravenous route. However, less systemic exposure to darunavir was noticed with nasal therapy, which confirms the low absorption of the drug into the central compartment. Overall, the data here demonstrate that the optimized in situ mucoadhesive nasal gel is effective in targeting darunavir to the brain by the nasal route and could be a viable option for the treatment of NeuroAIDS.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35742510

RESUMO

The development of an environmentally friendly analytical technique for simultaneous measurement of medicines with large concentration differences is difficult yet critical for environmental protection. Hence, in this work, new manipulated UV-spectroscopic methods with high scaling factors were established for concurrent quantification of telmisartan (TEL) and benidipine (BEN) in fixed-dose combinations. Two different methods were developed and established by calculation of peak height at zero crossing point of second derivative and the ratio of first derivative spectra with a scaling factor of 200 and 100, respectively. The absorption difference between the peaks and troughs of the ratio spectra, as well as continuous subtraction from ratio spectra, were established as additional methods. In addition, new procedures were validated using ICH recommendations. The proposed methods' linearity curves were constructed in the range of 0.5-10 µg mL-1 and 1-30 µg mL-1 for BEN and TEL, respectively, under optimized conditions. Furthermore, both the detection (0.088-0.139 µg mL-1 for BEN and 0.256-0.288 µg mL-1 for TEL) and quantification limits (0.293-0.465 µg mL-1 for BEN and 0.801-0.962 µg mL-1 for TEL) were adequate for quantifying both analytes in the formulation ratios. The accuracy and precision were confirmed by the good recovery percent (98.37%-100.6%), with low percent relative error (0.67%-1.70%) and less than 2 percent relative standard deviation, respectively. The specificity of the methods was proven by accurate and precise outcomes from the standard addition method and analysis of laboratory mixed solutions with large differences in concentrations of both analytes. Finally, the BEN and TEL content of the formulations was determined simultaneously without prior separation using these first ever reported spectroscopic methods. Furthermore, developed UV derivative spectroscopic methods demonstrated high greenness and whiteness when compared to the reported HPLC methods. These findings show that the projected methods were effective, practical, and environmentally acceptable for quality control of BEN and TEL in multicomponent formulations.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia Líquida de Alta Pressão/métodos , Di-Hidropiridinas , Controle de Qualidade , Espectrofotometria/métodos , Telmisartan
17.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566029

RESUMO

Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Proteínas de Transporte , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Larva , Simulação de Acoplamento Molecular , Controle de Mosquitos , Mosquitos Vetores , Pirimidinonas/farmacologia
18.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35455410

RESUMO

Antibiotic resistance continues to be a most serious threat to public health. This situation demands that the scientific community increase their efforts for the discovery of alternative strategies to circumvent the problems associated with conventional small molecule therapeutics. The Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report (published in June 2021) discloses the rapidly increasing number of bacterial infections that are mainly caused by antimicrobial-resistant bacteria. These concerns have initiated various government agencies and other organizations to educate the public regarding the appropriate use of antibiotics. This review discusses a brief highlight on the timeline of antimicrobial drug discovery with a special emphasis on the historical development of antimicrobial resistance. In addition, new antimicrobial targets and approaches, recent developments in drug screening, design, and delivery were covered. This review also discusses the emergence and roles of various antibiotic adjuvants and combination therapies while shedding light on current challenges and future perspectives. Overall, the emergence of resistant microbial strains has challenged drug discovery but their efforts to develop alternative technologies such as nanomaterials seem to be promising for the future.

19.
Pharmaceutics ; 14(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35335909

RESUMO

Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.

20.
Pharmaceutics ; 14(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35214068

RESUMO

Being a biopharmaceutics classification system class II drug, the absorption of sertraline from the gut is mainly limited by its poor aqueous solubility. The objective of this investigation was to improve the solubility of sertraline utilizing self-nanoemulsifying drug delivery systems (SNEDDS) and developing it into a tablet dosage form. Ternary phase diagrams were created to identify nanoemulsion regions by fixing oil (glycerol triacetate) and water while varying the surfactant (Tween 80) and co-surfactant (PEG 200) ratio (Smix). A three-factor, two-level (23) full factorial design (batches F1-F8) was utilized to check the effect of independent variables on dependent variables. Selected SNEDDS (batch F4) was solidified into powder by solid carrier adsorption method and compressed into tablets. The SNEDDS-loaded tablets were characterized for various pharmaceutical properties, drug release and evaluated in vivo in Wistar rats. A larger isotropic region was noticed with a Smix ratio of 2:1 and the nanoemulsion exhibited good stability. Screening studies' data established that all three independent factors influence the dependent variables. The prepared tablets displayed optimal pharmaceutical properties within acceptable limits. In vitro sertraline release demonstrated from solid SNEDDS was statistically significant (p < 0.0001) as compared to pure sertraline. Differential Scanning Calorimetry and X-Ray Diffraction data established the amorphous state of the drug in SNEDDS formulation, while FTIR spectra indicate the compatibility of excipients and drug. Pharmacokinetic evaluation of the SNEDDS tablet demonstrated significant increment (p < 0.0001) in AUC0-α (~5-folds), Cmax (~4-folds), and relative bioavailability (386%) as compared to sertraline suspension. The current study concludes that the solid SNEDDS formulation could be a practicable and effective strategy for oral therapy of sertraline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA