Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 145(3): 625-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684748

RESUMO

BACKGROUND & AIMS: In epithelial cells, protein sorting mechanisms regulate localization of plasma membrane proteins that generate and maintain cell polarity. The clathrin-adaptor protein (AP) complex AP-1B is expressed specifically in polarized epithelial cells, where it regulates basolateral sorting of membrane proteins. However, little is known about its physiological significance. METHODS: We analyzed the intestinal epithelia of mice deficient in Ap1m2 (Ap1m2(-/-) mice), which encodes the AP-1B µ1B subunit, and compared it with 129/B6/CD1 littermates (controls). Notch signaling was inhibited by intraperitoneal injection of dibenzazepine, and ß-catenin signaling was inhibited by injection of IWR1. Intestinal tissue samples were collected and analyzed by immunofluorescence analysis. RESULTS: Ap1m2(-/-) mice developed intestinal epithelial cell hyperplasia. The polarity of intestinal epithelial cells was disrupted, as indicated by the appearance of ectopic microvilli-like structures on the lateral plasma membrane and mislocalization of basolateral membrane proteins, including the low-density lipoprotein receptor and E-cadherin. The E-cadherin-ß-catenin complex therefore was disrupted at the adherens junction, resulting in nuclear translocation of ß-catenin. This resulted in up-regulation of genes regulated by ß-catenin/transcription factor 4 (Tcf4) complex, and increased the proliferation of intestinal epithelial cells. CONCLUSIONS: AP-1B is required for protein sorting and polarization of intestinal cells in mice. Loss of AP-1B in the intestinal epithelia results in mislocalization of E-cadherin, activation of ß-catenin/Tcf4 complex, proliferation, and hyperplasia.


Assuntos
Complexo 1 de Proteínas Adaptadoras/deficiência , Subunidades mu do Complexo de Proteínas Adaptadoras/deficiência , Polaridade Celular , Proliferação de Células , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Complexo 1 de Proteínas Adaptadoras/fisiologia , Subunidades mu do Complexo de Proteínas Adaptadoras/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Imunofluorescência , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Fator de Transcrição 4 , beta Catenina/metabolismo
2.
Mol Cell Biol ; 25(21): 9318-23, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227583

RESUMO

The heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4 play key roles in transport vesicle formation and cargo sorting in post-Golgi trafficking pathways. Studies on cultured mammalian cells have shown that AP-2 mediates rapid endocytosis of a subset of plasma membrane receptors. To determine whether this function is essential in the context of a whole mammalian organism, we carried out targeted disruption of the gene encoding the mu2 subunit of AP-2 in the mouse. We found that mu2 heterozygous mutant mice were viable and had an apparently normal phenotype. In contrast, no mu2 homozygous mutant embryos were identified among blastocysts from intercrossed heterozygotes, indicating that mu2-deficient embryos die before day 3.5 postcoitus (E3.5). These results indicate that AP-2 is indispensable for early embryonic development, which might be due to its requirement for cell viability.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Animais , Sobrevivência Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Endocitose , Fibroblastos/citologia , Fibroblastos/fisiologia , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Dev Growth Differ ; 37(5): 581-588, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37281476

RESUMO

Mesoderm of early vertebrate embryos gradually acquires dorsal-ventral polarity during embryogenesis. This specification of mesoderm is thought to be regulated by several polypeptide growth factors. Bone morphogenetic protein (BMP), a member of the TGF-ß family, is one of the regulators suggested to be involved in the formation of ventral mesoderm. In this paper, the nature of the endogenous BMP signal in dorsal-ventral specification was assessed in early Xenopus embryos using a dominant negative mutant of the Xenopus BMP receptor. In ectodermal explant assays, disruption of endogenous BMP signaling by the mutant receptor changed the competence of the explant cells to mesoderm-inducing factors, activin and basic fibroblast growth factor (bFGF), and led to formation of neural tissue without mesoderm induction. This result suggests that endogenous BMP acts as a ventral mesoderm modifier rather than a ventral mesoderm inducer, and that interactions between endogenous BMP and mesoderm-inducing factors may be important in dorsal-ventral patterning of embryonic mesoderm. In addition, the induction of neural tissue by inhibition of the BMP signaling pathway also suggests involvement of BMP in neural induction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA