Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Chembiochem ; 25(10): e202300808, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400776

RESUMO

The process of protein transport across membranes involves a variety of factors and has been extensively investigated. Traditionally, proteinaceous translocons and chaperones have been recognized as crucial factors in this process. However, recent studies have highlighted the significant roles played by lipids and a glycolipid present in biological membranes in membrane protein transport. Membrane lipids can influence transport efficiency by altering the physicochemical properties of membranes. Notably, our studies have revealed that diacylglycerol (DAG) attenuates mobility in the membrane core region, leading to a dramatic suppression of membrane protein integration. Conversely, a glycolipid in Escherichia coli inner membranes, named membrane protein integrase (MPIase), enhances integration not only through the alteration of membrane properties but also via direct interactions with membrane proteins. This review explores the mechanisms of membrane protein integration mediated by membrane lipids, specifically DAG, and MPIase. Our results, along with the employed physicochemical analysis methods such as fluorescence measurements, nuclear magnetic resonance, surface plasmon resonance, and docking simulation, are presented to elucidate these mechanisms.


Assuntos
Membrana Celular , Escherichia coli , Glicolipídeos , Transporte Proteico , Glicolipídeos/metabolismo , Glicolipídeos/química , Escherichia coli/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Diglicerídeos/metabolismo , Diglicerídeos/química
2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139315

RESUMO

Although the 20S core particle (CP) of the proteasome is an important component of the 26S holoenzyme, the stand-alone 20S CP acts directly on intrinsically disordered and oxidized/damaged proteins to degrade them in a ubiquitin-independent manner. It has been postulated that some structural features of substrate proteins are recognized by the 20S CP to promote substrate uptake, but the mechanism of substrate recognition has not been fully elucidated. In this study, we screened peptides that bind to the 20S CP from a random eight-residue pool of amino acid sequences using complementary DNA display an in vitro molecular evolution technique. The identified 20S CP-binding amino acid sequence was chemically synthesized and its effects on the 20S CP were investigated. The 20S CP-binding peptide stimulated the proteolytic activity of the inactive form of 20S CP. The peptide bound directly to one of the α-subunits, opening a gate for substrate entry on the α-ring. Furthermore, the attachment of this peptide sequence to α-synuclein enhanced its degradation by the 20S CP in vitro. In addition to these results, docking simulations indicated that this peptide binds to the top surface of the α-ring. These peptides could function as a key to control the opening of the α-ring gate.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Aceleração
3.
Sci Rep ; 12(1): 12231, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851412

RESUMO

Non-proteinaceous components in membranes regulate membrane protein insertion cooperatively with proteinaceous translocons. An endogenous glycolipid in the Escherichia coli membrane called membrane protein integrase (MPIase) is one such component. Here, we focused on the Sec translocon-independent pathway and examined the mechanisms of MPIase-facilitated protein insertion using physicochemical techniques. We determined the membrane insertion efficiency of a small hydrophobic protein using solid-state nuclear magnetic resonance, which showed good agreement with that determined by the insertion assay using an in vitro translation system. The observed insertion efficiency was strongly correlated with membrane physicochemical properties measured using fluorescence techniques. Diacylglycerol, a trace component of E. coli membrane, reduced the acyl chain mobility in the core region and inhibited the insertion, whereas MPIase restored them. We observed the electrostatic intermolecular interactions between MPIase and the side chain of basic amino acids in the protein, suggesting that the negatively charged pyrophosphate of MPIase attracts the positively charged residues of a protein near the membrane surface, which triggers the insertion. Thus, this study demonstrated the ingenious approach of MPIase to support membrane insertion of proteins by using its unique molecular structure in various ways.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Canais de Translocação SEC/metabolismo
4.
ACS Chem Biol ; 17(3): 609-618, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35239308

RESUMO

Inducing newly synthesized proteins to appropriate locations is an indispensable biological function in every organism. Integration of proteins into biomembranes in Escherichia coli is mediated by proteinaceous factors, such as Sec translocons and an insertase YidC. Additionally, a glycolipid named MPIase (membrane protein integrase), composed of a long sugar chain and pyrophospholipid, was proven essential for membrane protein integration. We reported that a synthesized minimal unit of MPIase possessing only one trisaccharide, mini-MPIase-3, involves an essential structure for the integration activity. Here, to elucidate integration mechanisms using MPIase, we analyzed intermolecular interactions of MPIase or its synthetic analogs with a model substrate, the Pf3 coat protein, using physicochemical methods. Surface plasmon resonance (SPR) analyses revealed the importance of a pyrophosphate for affinity to the Pf3 coat protein. Compared with mini-MPIase-3, natural MPIase showed faster association and dissociation due to its long sugar chain despite the slight difference in affinity. To focus on more detailed MPIase substructures, we performed docking simulations and saturation transfer difference-nuclear magnetic resonance. These experiments yielded that the 6-O-acetyl group on glucosamine and the phosphate of MPIase play important roles leading to interactions with the Pf3 coat protein. The high affinity of MPIase to the hydrophobic region and the basic amino acid residues of the protein was suggested by docking simulations and proven experimentally by SPR using protein mutants devoid of target regions. These results demonstrated the direct interactions of MPIase with a substrate protein and revealed detailed mechanisms of membrane protein integration.


Assuntos
Proteínas de Escherichia coli , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicolipídeos/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Açúcares
5.
FEBS Open Bio ; 12(1): 285-294, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850606

RESUMO

Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti-coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS-CoV-2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell-based SARS-CoV-2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.


Assuntos
Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , COVID-19/prevenção & controle , Preparações de Plantas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Benzilisoquinolinas/química , Benzilisoquinolinas/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Proteínas M de Coronavírus/antagonistas & inibidores , Proteínas M de Coronavírus/química , Proteínas M de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Preparações de Plantas/química , Preparações de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Stephania/química , Células Vero
6.
Biophys Physicobiol ; 18: 226-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745807

RESUMO

More than one and half years have passed, as of August 2021, since the COVID-19 caused by the novel coronavirus named SARS-CoV-2 emerged in 2019. While the recent success of vaccine developments likely reduces the severe cases, there is still a strong requirement of safety and effective therapeutic drugs for overcoming the unprecedented situation. Here we review the recent progress and the status of the drug discovery against COVID-19 with emphasizing a structure-based perspective. Structural data regarding the SARS-CoV-2 proteome has been rapidly accumulated in the Protein Data Bank, and up to 68% of the total amino acid residues encoded in the genome were covered by the structural data. Despite a global effort of in silico and in vitro screenings for drug repurposing, there is only a limited number of drugs had been successfully authorized by drug regulation organizations. Although many approved drugs and natural compounds, which exhibited antiviral activity in vitro, were considered potential drugs against COVID-19, a further multidisciplinary investigation is required for understanding the mechanisms underlying the antiviral effects of the drugs.

7.
FEBS Lett ; 594(12): 1960-1973, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32379896

RESUMO

The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 a pandemic. There is, however, no confirmed anti-COVID-19 therapeutic currently. In order to assist structure-based discovery efforts for repurposing drugs against this disease, we constructed knowledge-based models of SARS-CoV-2 proteins and compared the ligand molecules in the template structures with approved/experimental drugs and components of natural medicines. Our theoretical models suggest several drugs, such as carfilzomib, sinefungin, tecadenoson, and trabodenoson, that could be further investigated for their potential for treating COVID-19.


Assuntos
Antivirais/metabolismo , Betacoronavirus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica , SARS-CoV-2
8.
Molecules ; 24(22)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717651

RESUMO

BACKGROUND: Curcumin has been shown to exert pleiotropic biological effects, including anti-tumorigenic activity. We previously showed that curcumin controls reactive oxygen species (ROS) levels through the ROS metabolic enzymes, to prevent tumor cell growth. In this study, we synthesized 39 novel curcumin derivatives and examined their anti-proliferative and anti-tumorigenic properties. METHODS AND RESULTS: Thirty-nine derivatives exhibited anti-proliferative activity toward human cancer cell lines, including CML-derived K562 leukemic cells, in a manner sensitive to an antioxidant, N-acetyl-cysteine (NAC). Some compounds exhibited lower GI50 values than curcumin, some efficiently induced cell senescence, and others markedly increased ROS levels, efficiently induced cell death and suppressed tumor formation in a xenograft mouse model, without any detectable side effects. A clustering analysis of the selected compounds and their measurement variables revealed that anti-tumorigenic activity was most well-correlated with an increase in ROS levels. Pulldown assays and a molecular docking analysis showed that curcumin derivatives competed with co-enzymes to bind to the respective ROS metabolic enzymes and inhibited their enzymatic activities. CONCLUSIONS: The analysis of novel curcumin derivatives established the importance of ROS upregulation in suppression of tumorigenesis, and these compounds are potentially useful for the development of an anti-cancer drug with few side effects.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Técnicas de Química Sintética , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/química , Modelos Animais de Doenças , Desenho de Fármacos , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 9(1): 14867, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619723

RESUMO

We previously showed that curcumin, a phytopolyphenol found in turmeric (Curcuma longa), targets a series of enzymes in the ROS metabolic pathway, induces irreversible growth arrest, and causes apoptosis. In this study, we tested Pentagamavunon-1 (PGV-1), a molecule related to curcumin, for its inhibitory activity on tumor cells in vitro and in vivo. PGV-1 exhibited 60 times lower GI50 compared to that of curcumin in K562 cells, and inhibited the proliferation of cell lines derived from leukemia, breast adenocarcinoma, cervical cancer, uterine cancer, and pancreatic cancer. The inhibition of growth by PGV-1 remained after its removal from the medium, which suggests that PGV-1 irreversibly prevents proliferation. PGV-1 specifically induced prometaphase arrest in the M phase of the cell cycle, and efficiently induced cell senescence and cell death by increasing intracellular ROS levels through inhibition of ROS-metabolic enzymes. In a xenograft mouse model, PGV-1 had marked anti-tumor activity with little side effects by oral administration, whereas curcumin rarely inhibited tumor formation by this administration. Therefore, PGV-1 is a potential therapeutic to induce tumor cell apoptosis with few side effects and low risk of relapse.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcumina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Prometáfase/efeitos dos fármacos , Administração Oral , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células MCF-7 , Camundongos Nus , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Prometáfase/genética , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proteins ; 86(6): 644-653, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524263

RESUMO

The nacreous layer of pearl oysters is one of the major biominerals of commercial and industrial interest. Jacalin-related lectins, including PPL3 isoforms, are known to regulate biomineralization of the Pteria penguin pearl shell, although the molecular mechanisms are largely unknown. The PPL3 crystal structures were determined partly by utilizing microgravity environments for 3 isoforms, namely, PPL3A, PPL3B, and PPL3C. The structures revealed a tail-to-tail dimer structure established by forming a unique inter-subunit disulfide bond at C-termini. The N-terminal residues were found in pyroglutamate form, and this was partly explained by the post-translational modification of PPL3 isoforms implied from the discrepancy between amino acid and gene sequences. The complex structures with trehalose and isomaltose indicated that the novel specificity originated from the unique α-helix of PPL3 isoforms. Docking simulations of PPL3B to various calcite crystal faces suggested the edge of a ß-sheet and the carbohydrate-binding site rich in charged residues were the interface to the biomineral, and implied that the isoforms differed in calcite interactions.


Assuntos
Biomineralização , Lectinas/química , Pinctada/química , Lectinas de Plantas/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sítios de Ligação , Carbonato de Cálcio/química , Carboidratos/química , Simulação de Acoplamento Molecular , Filogenia , Ligação Proteica , Conformação Proteica em Folha beta , Isoformas de Proteínas/química
11.
Eur J Med Chem ; 146: 636-650, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407987

RESUMO

Ridaifen-F (RID-F) potently inhibits proteolytic activities of the 20S proteasome but poorly inhibits those of the 26S proteasome. Here, we report preparation of several conjugates in which various peptides are connected to RID-F. Conjugates with peptides consisting of seven amino acid residues significantly inhibited the 26S proteasome. Particularly, RID-F conjugated to an octaarginine peptide (R8, a so-called cell-penetrating peptide) inhibited intracellular proteasome activities and induced cell death in drug-resistant KMS-11 myeloma cells. RID-F conjugated to hydrophobic peptides also inhibited the 26S proteasome but failed to induce cell death, suggesting poor penetration into cells. We infer that the R8 peptide has dual functions: (1) rapid penetration of conjugates into the cell increases intracellular drug concentrations sufficient for exhibition of its effect, and (2) recognition of the conjugates by the 26S proteasome stimulates drug entry into the catalytic chamber. In the presence of ATPγS, RID-F conjugates containing R8 inhibited the 26S proteasome more potently than in the presence of ATP, suggesting efficient entry of drugs into the catalytic chamber in a similar fashion to the substrate. Taken together with docking simulations of RID-F conjugate interactions with proteasome active sites, the second function of R8 peptide is plausible. Thus, the conjugation of nonpeptidic proteasome inhibitors to a cell-penetrating peptide could represent a viable strategy for overcoming the drug-resistance of tumor cells.


Assuntos
Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Tamoxifeno/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteassoma/química , Relação Estrutura-Atividade , Tamoxifeno/química , Tamoxifeno/farmacologia , Células Tumorais Cultivadas
12.
Sci Rep ; 7(1): 8541, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819267

RESUMO

The inheritance modes of pathogenic missense mutations are known to be highly associated with protein structures; recessive mutations are mainly observed in the buried region of protein structures, whereas dominant mutations are significantly enriched in the interfaces of molecular interactions. However, the differences in phenotypic impacts among various dominant mutations observed in individuals are not fully understood. In the present study, the functional effects of pathogenic missense mutations on three-dimensional macromolecular complex structures were explored in terms of dominant mutation types, namely, haploinsufficiency, dominant-negative, or toxic gain-of-function. The major types of dominant mutation were significantly associated with the different types of molecular interactions, such as protein-DNA, homo-oligomerization, or intramolecular domain-domain interactions, affected by mutations. The dominant-negative mutations were biased toward molecular interfaces for cognate protein or DNA. The haploinsufficiency mutations were enriched on the DNA interfaces. The gain-of-function mutations were localized to domain-domain interfaces. Our results demonstrate a novel use of macromolecular complex structures for predicting the disease-causing mechanisms through inheritance modes.


Assuntos
Doença/genética , Mutação de Sentido Incorreto , Conformação Proteica , Proteínas/química , Proteínas/genética , Genes Dominantes/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Haploinsuficiência , Humanos , Modelos Moleculares
13.
Angew Chem Int Ed Engl ; 56(1): 270-274, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27900841

RESUMO

Prod1 is a protein that regulates limb regeneration in salamanders by determining the direction of limb growth. Prod1 is attached to the membrane by a glycosylphosphatidylinositol (GPI) anchor, but the role of membrane anchoring in the limb regeneration process is poorly understood. In this study, we investigated the functional role of the anchoring of Prod1 to the membrane by using its synthetic mimics in combination with solid-state NMR spectroscopy and fluorescent microscopy techniques. Anchoring did not affect the three-dimensional structure of Prod1 but did induce aggregation by aligning the molecules and drastically reducing the molecular motion on the two-dimensional membrane surface. Interestingly, aggregated Prod1 interacted with Prod1 molecules tethered on the surface of opposing membranes, inducing membrane adhesion. Our results strongly suggest that anchoring of the salamander-specific protein Prod1 assists cell adhesion in the limb regeneration process.


Assuntos
Proteínas de Anfíbios/metabolismo , Extremidades/crescimento & desenvolvimento , Glicosilfosfatidilinositóis/metabolismo , Regeneração , Salamandridae/metabolismo , Proteínas de Anfíbios/química , Animais , Glicosilfosfatidilinositóis/química , Microscopia de Fluorescência , Ressonância Magnética Nuclear Biomolecular
14.
Eur J Med Chem ; 71: 290-305, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24321833

RESUMO

In a survey of nonpeptide noncovalent inhibitors of the human 20S proteasome, we found that a novel tamoxifen derivative, RID-F (compound 6), inhibits all three protease activities of the proteasome at submicromolar levels. Structure-activity relationship studies revealed that a RID-F analog (RID-F-S*4, compound 25) is the smallest derivative compound capable of inhibiting proteasome activity, with a potency similar to that of RID-F. Kinetic analyses of the inhibition mode and competition experiments involving biotin-belactosin A (a proteasome inhibitor) binding indicated that the RID-F derivatives interact with the protease subunits in a different manner. Culturing of human cells with these compounds resulted in accumulation of ubiquitinated proteins and induction of apoptosis. Thus, the RID-F derivatives may be useful lead chemicals for the generation of a new class of proteasome inhibitors.


Assuntos
Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade
15.
J Mol Biol ; 425(22): 4468-78, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23954514

RESUMO

The crystal structure of a novel component of the mannan biodegradation system, 4-O-ß-D-mannosyl-D-glucose phosphorylase (MGP), was determined to a 1.68-Å resolution. The structure of the enzyme revealed a unique homohexameric structure, which was formed by using two helices attached to the N-terminus and C-terminus as a tab for sticking between subunits. The structures of MGP complexes with genuine substrates, 4-O-ß-D-mannosyl-D-glucose and phosphate, and the product D-mannose-1-phosphate were also determined. The complex structures revealed that the invariant residue Asp131, which is supposed to be the general acid/base, did not exist close to the glycosidic Glc-O4 atom, which should be protonated in the catalytic reaction. Also, no solvent molecule that might mediate a proton transfer from Asp131 was observed in the substrate complex structure, suggesting that the catalytic mechanism of MGP is different from those of known disaccharide phosphorylases.


Assuntos
Fosforilases/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Glucose/química , Glucose/metabolismo , Mananas/química , Mananas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilases/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Alinhamento de Sequência , Especificidade por Substrato
16.
Bioinformatics ; 28(15): 2076-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22645168

RESUMO

SUMMARY: Alternative Splicing Effects ASsessment Tools (AS-EAST) is an online tool for the functional annotation of putative proteins encoded by transcripts generated by alternative splicing (AS). When provided with a transcript sequence, AS-EAST identifies regions altered by AS events in the putative protein sequence encoded by the transcript. Users can evaluate the predicted function of the putative protein by inspecting whether functional domains are included in the altered regions. Moreover, users can infer the loss of inter-molecular interactions in the protein network according to whether the AS events affect interaction residues observed in the 3D structure of the reference isoform. The information obtained from AS-EAST will help to design experimental analyses for the functional significance of novel splice isoforms. AVAILABILITY: The online tool is freely available at http://as-alps.nagahama-i-bio.ac.jp/ASEAST/. CONTACT: m_shionyu@nagahama-i-bio.ac.jp.


Assuntos
Processamento Alternativo , Proteínas/genética , Software , Sequência de Aminoácidos , Biologia Computacional/métodos , Isoformas de Proteínas/genética , Interface Usuário-Computador
17.
J Biol Chem ; 285(44): 34155-67, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20729547

RESUMO

Chondroitin sulfate (CS) is a polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and d-glucuronic acid residues, modified with sulfated residues at various positions. To date six glycosyltransferases for chondroitin synthesis have been identified, and the complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 (ChSy-1) and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is assumed to play a major role in CS biosynthesis. We found an alternative splice variant of mouse CSS2 in a data base that lacks the N-terminal transmembrane domain, contrasting to the original CSS2. Here, we investigated the roles of CSS2 variants. Both the original enzyme and the splice variant, designated CSS2A and CSS2B, respectively, were expressed at different levels and ratios in tissues. Western blot analysis of cultured mouse embryonic fibroblasts confirmed that both enzymes were actually synthesized as proteins and were localized in both the endoplasmic reticulum and the Golgi apparatus. Pulldown assays revealed that either of CSS2A, CSS2B, and CSS1/ChSy-1 heterogeneously and homogeneously interacts with each other, suggesting that they form a complex of multimers. In vitro glycosyltransferase assays demonstrated a reduced glucuronyltransferase activity in CSS2B and no polymerizing activity in CSS2B co-expressed with CSS1, in contrast to CSS2A co-expressed with CSS1. Radiolabeling analysis of cultured COS-7 cells overexpressing each variant revealed that, whereas CSS2A facilitated CS biosynthesis, CSS2B inhibited it. Molecular modeling of CSS2A and CSS2B provided support for their properties. These findings, implicating regulation of CS chain polymerization by CSS2 variants, provide insight in elucidating the mechanisms of CS biosynthesis.


Assuntos
Hexosiltransferases/fisiologia , N-Acetilgalactosaminiltransferases/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Glicosaminoglicanos/química , Hexosiltransferases/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Células NIH 3T3 , Homologia de Sequência de Aminoácidos
18.
Plant Cell Physiol ; 50(11): 1865-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19808808

RESUMO

Transcripts from mitochondrial and chloroplast DNA of land plants often undergo cytidine to uridine conversion-type RNA editing events. RESOPS is a newly built database that specializes in displaying RNA editing sites of land plant organelles on protein three-dimensional (3D) structures to help elucidate the mechanisms of RNA editing for gene expression regulation. RESOPS contains the following information: unedited and edited cDNA sequences with notes for the target nucleotides of RNA editing, conceptual translation from the edited cDNA sequence in pseudo-UniProt format, a list of proteins under the influence of RNA editing, multiple amino acid sequence alignments of edited proteins, the location of amino acid residues coded by codons under the influence of RNA editing in protein 3D structures and the statistics of biased distributions of the edited residues with respect to protein structures. Most of the data processing procedures are automated; hence, it is easy to keep abreast of updated genome and protein 3D structural data. In the RESOPS database, we clarified that the locations of residues switched by RNA editing are significantly biased to protein structural cores. The integration of different types of data in the database also help advance the understanding of RNA editing mechanisms. RESOPS is accessible at http://cib.cf.ocha.ac.jp/RNAEDITING/.


Assuntos
Bases de Dados de Proteínas , Genoma de Planta , Proteínas de Plantas/genética , Edição de RNA , Cloroplastos/genética , DNA de Cloroplastos/genética , DNA Complementar/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Conformação Proteica , Dobramento de Proteína , RNA de Plantas/genética , Alinhamento de Sequência , Interface Usuário-Computador
19.
Nucleic Acids Res ; 37(Database issue): D305-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015123

RESUMO

We have constructed a database, AS-ALPS (alternative splicing-induced alteration of protein structure), which provides information that would be useful for analyzing the effects of alternative splicing (AS) on protein structure, interactions with other bio-molecules and protein interaction networks in human and mouse. Several AS events have been revealed to contribute to the diversification of protein structure, which results in diversification of interaction partners or affinities, which in turn contributes to regulation of bio-molecular networks. Most AS variants, however, are only known at the sequence level. It is important to determine the effects of AS on protein structure and interaction, and to provide candidates for experimental targets that are relevant to network regulation by AS. For this purpose, the three-dimensional (3D) structures of proteins are valuable sources of information; however, these have not been fully exploited in any other AS-related databases. AS-ALPS is the only AS-related database that describes the spatial relationships between protein regions altered by AS ('AS regions') and both the proteins' hydrophobic cores and sites of inter-molecular interactions. This information makes it possible to infer whether protein structural stability and/or protein interaction are affected by each AS event. AS-ALPS can be freely accessed at http://as-alps.nagahama-i-bio.ac.jp and http://genomenetwork.nig.ac.jp/as-alps/.


Assuntos
Processamento Alternativo , Bases de Dados de Proteínas , Isoformas de Proteínas/química , Animais , Códon sem Sentido , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA