Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(19)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36866651

RESUMO

Understanding the various competing phases in cuprate superconductors is a long-standing challenging problem. Recent studies have shown that orbital degrees of freedom, both Cuegorbitals and Oporbitals, are a key ingredient for a unified understanding of cuprate superconductors, including the material dependence. Here we investigate a four-bandd-pmodel derived from the first-principles calculations with the variational Monte Carlo method, which allows us to elucidate competing phases on an equal footing. The obtained results can consistently explain the doping dependence of superconductivity, antiferromagnetic and stripe phases, phase separation in the underdoped region, and also novel magnetism in the heavily-overdoped region. The presence ofporbitals is critical to the charge-stripe features, which induce two types of stripe phases withs)-wave andd-wave bond stripe. On the other hand, the presence ofdz2orbital is indispensable to material dependence of the superconducting transition temperature (Tc), and enhances local magnetic moment as a source of novel magnetism in the heavily-overdoped region as well. These findings beyond one-band description could provide a major step toward a full explanation of unconventional normal state and highTcin cuprate supercondutors.

2.
Phys Rev Lett ; 126(15): 157202, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929225

RESUMO

Employing unbiased large-scale time-dependent density-matrix renormalization-group simulations, we demonstrate the generation of a charge-current vortex via spin injection in the Rashba system. The spin current is polarized perpendicular to the system plane and injected from an attached antiferromagnetic spin chain. We discuss the conversion between spin and orbital angular momentum in the current vortex that occurs because of the conservation of the total angular momentum and the spin-orbit interaction. This is in contrast to the spin Hall effect, in which the angular-momentum conservation is violated. Finally, we predict the electromagnetic field that accompanies the vortex with regard to possible future experiments.

3.
J Chem Theory Comput ; 16(10): 6114-6131, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32804497

RESUMO

We propose here a single Pfaffian correlated variational ansatz that dramatically improves the accuracy with respect to the single determinant one, while remaining at a similar computational cost. A much larger correlation energy is indeed determined by the most general two electron pairing function, including both singlet and triplet channels, combined with a many-body Jastrow factor, including all possible spin-spin, spin-density, and density-density terms. The main technical ingredient to exploit this accuracy is the use of the Pfaffian for antisymmetrizing a highly correlated pairing function, thus recovering the Fermi statistics for electrons with an affordable computational cost. Moreover, the application of the diffusion Monte Carlo, within the fixed node approximation, allows us to obtain very accurate binding energies for the first preliminary calculations reported in this study: C2, N2, and O2 and the benzene molecule. This is promising and remarkable, considering that they represent extremely difficult molecules even for computationally demanding multideterminant approaches, and opens therefore the way for realistic and accurate electronic simulations with an algorithm scaling at most as the fourth power of the number of electrons.

4.
Phys Rev Lett ; 122(7): 077002, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848621

RESUMO

By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the η-pairing mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of η pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram, and also provides an alternative mechanism for enhancing superconductivity.

5.
Phys Rev Lett ; 121(6): 066402, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141665

RESUMO

The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just energy) of strained graphene by an accurate off-lattice quantum Monte Carlo correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene at low strain, multideterminant Heitler-London correlations stabilize between ≃8.5% and ≃15% strain an insulating Kekulé-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state, the DIM state prevails over the competing antiferromagnetic insulating state favored by density-functional calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain conditions 1D metallic interface states lying in the bulk energy gap.

6.
Phys Rev Lett ; 117(18): 187201, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835008

RESUMO

The t_{2g} orbitals of an edge-shared transition-metal oxide with a honeycomb lattice structure form dispersionless electronic bands when only hopping mediated by the edge-sharing oxygens is accessible. This is due to the formation of isolated quasimolecular orbitals (QMOs) in each hexagon, introduced recently by Mazin et al. [Phys. Rev. Lett. 109, 197201 (2012)], which stabilizes a band insulating phase for t_{2g}^{5} systems. However, with the help of the exact diagonalization method to treat the electron kinetics and correlations on an equal footing, we find that the QMOs are fragile against not only the spin-orbit coupling (SOC) but also the Coulomb repulsion. We show that the electronic phase of t_{2g}^{5} systems can vary from a quasimolecular band insulator to a relativistic J_{eff}=1/2 Mott insulator with increasing the SOC as well as the Coulomb repulsion. The different electronic phases manifest themselves in electronic excitations observed in optical conductivity and resonant inelastic x-ray scattering. Based on our calculations, we assert that the currently known Ru^{3+} and Ir^{4+} based honeycomb systems are far from the quasimolecular band insulator but rather the relativistic Mott insulator.

7.
Phys Rev Lett ; 110(2): 027002, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383933

RESUMO

Based on a microscopic theoretical study, we show that novel superconductivity is induced by carrier doping in layered perovskite Ir oxides where a strong spin-orbit coupling causes an effective total angular momentum J(eff)=1/2 Mott insulator. Using a variational Monte Carlo method, we find an unconventional superconducting state in the ground state phase diagram of a t(2g) three-orbital Hubbard model on the square lattice. This superconducting state is characterized by a d(x(2)-y(2))-wave "pseudospin singlet" formed by the J(eff)=1/2 Kramers doublet, which thus contains interorbital as well as both singlet and triplet components of t(2g) electrons. The superconducting state is found stable only by electron doping, but not by hole doping, for the case of carrier doped Sr2IrO4. We also study an effective single-orbital Hubbard model to discuss the similarities to high-T(c) cuprate superconductors and the multiorbital effects.

8.
Phys Rev Lett ; 105(21): 216410, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231335

RESUMO

Motivated by recent experiments of a novel 5d Mott insulator in Sr2IrO4, we have studied the two-dimensional three-orbital Hubbard model with a spin-orbit coupling λ. The variational Monte Carlo method is used to obtain the ground state phase diagram with varying an on-site Coulomb interaction U as well as λ. It is found that the transition from a paramagnetic metal to an antiferromagnetic insulator occurs at a finite U=U(MI), which is greatly reduced by a large λ, characteristic of 5d electrons, and leads to the "spin-orbit-induced" Mott insulator. It is also found that the Hund's coupling induces the anisotropic spin exchange and stabilizes the in-plane antiferromagnetic order. We have further studied the one-particle excitations by using the variational cluster approximation and revealed the internal electronic structure of this novel Mott insulator. These findings are in agreement with experimental observations on Sr2IrO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA