Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281257

RESUMO

The modern lifestyle brings both excessive fructose consumption and daily exposure to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation. The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated receptors-α and -δ and stimulated lipid uptake, lipolysis and ß-oxidation in the muscle of fructose-fed stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin receptor supstrate-1 and Akt, as well as the level of 11ß-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B, nuclear factor-κB, tumor necrosis factor-α, were observed in the muscle of fructose-fed stressed rats. Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle can make a setting for lipid-induced inflammation and the development of insulin resistance in fructose-fed stressed rats.


Assuntos
Frutose/administração & dosagem , Glucocorticoides/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Estresse Fisiológico/fisiologia , Animais , Frutose/efeitos adversos , Humanos , Inflamação/etiologia , Resistência à Insulina/fisiologia , Masculino , Modelos Biológicos , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA