Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625405

RESUMO

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Assuntos
Adenilil Ciclases , Membrana Eritrocítica , Recuperação de Fluorescência Após Fotodegradação , Fluidez de Membrana , Adenilil Ciclases/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Humanos , Membrana Eritrocítica/metabolismo , Ativação Enzimática , Transdução de Sinais/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/farmacologia , Epinefrina/metabolismo
2.
Diagnostics (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685360

RESUMO

Lymphedema is a pathology caused by poor lymphatic flow which may lead to complete disability. Currently, precise, non-invasive techniques for quantifying lymphedema are lacking. In this paper, the results of an in vivo assessment of lymphedema via a developed small-animal model using the hindlimbs of rats and an optical coherence tomography (OCT) technique are presented. This model of lymphedema was based on a surgical lymph node resection and subsequent two-step X-ray exposure. The development of lymphedema was verified via the histological examination of tissue biopsies. The properties of the lymphedematous skin were analyzed in vivo and compared with healthy skin via OCT. The main differences observed were (1) a thickening of the stratum corneum layer, (2) a thinning of the viable epidermis layer, and (3) higher signal attenuation in the dermis layer of the lymphedematous skin. Based on the distribution of the OCT signal's intensity in the skin, a machine learning algorithm was developed which allowed for a classification of normal and lymphedematous tissue sites with an accuracy of 90%. The obtained results pave the way for in vivo control over the development of lymphedema.

3.
Sci Rep ; 12(1): 10329, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725581

RESUMO

Artificial biomaterials can significantly increase the rate of tissue regeneration. However, implantation of scaffolds leads not only to accelerated tissue healing but also to an immune response of the organism, which results in the degradation of the biomaterial. The synergy of the immune response and scaffold degradation processes largely determines the efficiency of tissue regeneration. Still, methods suitable for fast, accurate and non-invasive characterization of the degradation degree of biomaterial are highly demandable. Here we show the possibility of monitoring the degradation of decellularized bovine pericardium scaffolds under conditions mimicking the immune response and oxidation processes using multiphoton tomography combined with fluorescence lifetime imaging (MPT-FLIM). We found that the fluorescence lifetimes of genipin-induced cross-links in collagen and oxidation products of collagen are prominent markers of oxidative degradation of scaffolds. This was verified in model experiments, where the oxidation was induced with hypochlorous acid or by exposure to activated neutrophils. The fluorescence decay parameters also correlated with the changes of micromechanical properties of the scaffolds as assessed using atomic force microscopy (AFM). Our results suggest that FLIM can be used for quantitative assessments of the properties and degradation of the scaffolds essential for the wound healing processes in vivo.


Assuntos
Materiais Biocompatíveis , Colágeno , Animais , Materiais Biocompatíveis/farmacologia , Bovinos , Colágeno/metabolismo , Imagem Óptica , Pericárdio/metabolismo , Alicerces Teciduais
4.
Analyst ; 146(10): 3185-3196, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33999054

RESUMO

Determination of the molecular composition of the skin is crucial for numerous tasks in medicine, pharmacology, dermatology and cosmetology. Confocal Raman microspectroscopy is a sensitive method for the evaluation of molecular depth profiles in the skin in vivo. Since the Raman spectra of most of the skin constituents significantly superimpose, a spectral decomposition by a set of predefined library components is usually performed to disentangle their contributions. However, the incorrect choice of the number and type of components or differences between the spectra of the basic components measured in vitro and in vivo can lead to incorrect results of the decomposition procedure. Here, we investigate an alternative data-driven approach based on a non-negative matrix factorization (NNMF) algorithm of depth-resolved Raman spectra of skin that does not require a priori information of spectral data for the analysis. Using the model and experimentally measured depth-resolved Raman spectra of the upper epidermis in vivo, we show that NNMF provides depth profiles of endogenous molecular components and exogenous agents penetrating through the upper epidermis for the spectra and concentration. Moreover, we demonstrate that this approach is capable of providing new information on the molecular profiles of the skin.


Assuntos
Pele , Análise Espectral Raman , Algoritmos , Epiderme , Humanos
5.
Sci Rep ; 10(1): 14374, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873804

RESUMO

The fate of melanin in the epidermis is of great interest due to its involvement in numerous physiological and pathological processes in the skin. Melanin localization can be assessed ex vivo and in vivo using its distinctive optical properties. Melanin exhibits a characteristic Raman spectrum band shape and discernible near-infrared excited (NIR) fluorescence. However, a detailed analysis of the capabilities of depth-resolved confocal Raman and fluorescence microspectroscopy in the evaluation of melanin distribution in the human skin is lacking. Here we demonstrate how the fraction of melanin at different depths in the human skin in vivo can be estimated from its Raman spectra (bands at 1,380 and 1,570 cm-1) using several procedures including a simple ratiometric approach, spectral decomposition and non-negative matrix factorization. The depth profiles of matrix factorization components specific to melanin, collagen and natural moisturizing factor provide information about their localization in the skin. The depth profile of the collagen-related matrix factorization component allows for precise determination of the dermal-epidermal junction, i.e. the epidermal thickness. Spectral features of fluorescence background originating from melanin were found to correlate with relative intensities of the melanin Raman bands. We also hypothesized that NIR fluorescence in the skin is not originated solely from melanin, and the possible impact of oxidized species should be taken into account. The ratio of melanin-related Raman bands at 1,380 and 1,570 cm-1 could be related to melanin molecular organization. The proposed combined analysis of the Raman scattering signal and NIR fluorescence could be a useful tool for rapid non-invasive in vivo diagnostics of melanin-related processes in the human skin.


Assuntos
Epiderme/química , Epiderme/metabolismo , Melaninas/química , Melaninas/metabolismo , Análise Espectral Raman/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Fluorescência/métodos , Adulto Jovem
6.
Sci Rep ; 9(1): 19487, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862928

RESUMO

The Ob-Irtysh River system is the seventh-longest one in the world. Unlike the other Great Siberian rivers, it is only slightly impacted by the continuous permafrost in its low flow. Instead, it drains the Great Vasyugan mire, which is the world largest swamp, and receives huge load of the Irtysh waters which drain the populated lowlands of the East Siberian Plain. The central challenge of this paper is to understand the processes responsible for molecular transformations of natural organic matter (NOM) in the Ob-Irtysh river system along the South-North transect. For solving this task, the NOM was isolated from the water samples collected along the 3,000 km transect using solid-phase extraction. The NOM samples were further analyzed using high resolution mass spectrometry and optical spectroscopy. The obtained results have shown a distinct trend both in molecular composition and diversity of the NOM along the South-North transect: the largest diversity was observed in the Southern "swamp-wetland" stations. The samples were dominated with humic and lignin-like components, and enriched with aminosugars. After the Irtysh confluence, the molecular nature of NOM has changed drastically: it became much more oxidized and enriched with heterocyclic N-containing compounds. These molecular features are very different from the aliphatics-rich permafrost NOM. They witnesses much more conservative nature of the NOM discharged into the Arctic by the Ob-Irtysh river system. In general, drastic reduction in molecular diversity was observed in the northern stations located in the lower Ob flow.

7.
Biochemistry (Mosc) ; 84(Suppl 1): S69-S88, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31213196

RESUMO

Multiphoton microscopy (MPM) is a method of molecular imaging and specifically of intravital imaging that is characterized by high spatial resolution in combination with a greater depth of penetration into the tissue. MPM is a multimodal method based on detection of nonlinear optical signals - multiphoton fluorescence and optical harmonics - and also allows imaging with the use of the parameters of fluorescence decay kinetics. This review describes and discusses photophysical processes within major reporter molecules used in MPM with endogenous contrasts and summarizes several modern experiments that illustrate the capabilities of label-free MPM for molecular imaging of biochemical processes in connective tissue and cells.


Assuntos
Fenômenos Bioquímicos , Células/metabolismo , Tecido Conjuntivo/metabolismo , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Óptica/métodos , Humanos
8.
Environ Sci Technol ; 52(21): 12526-12537, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296078

RESUMO

The objective of this study was to shed light on structural features which underlay intensity of long wave absorbance of natural organic matter (NOM) using 1H NMR spectroscopy. For this purpose, a set of the NOM samples was assembled from arctic and nonarctic sampling sites (the Kolyma river basin and Moscow region, respectively). It was to ensure a substantial difference in the humification degree of the isolated organic matter-the biogeochemical proxy of the long-wave absorbance of NOM. The assembled NOM set was analyzed using solution-state 1H NMR spectroscopy. The distribution of both backbone and exchangeable protons was determined using acquisition of spectra in three different solvents. The substantially higher contribution of nonfunctionalized aliphatic moieties CHn (e.g., materials derived from linear terpenoids, MDLT) in the arctic NOM samples was revealed as compared to the nonarctic ones. The latter were characterized with the higher content of CHα protons adjacent to electron-withdrawing groups which belong to carboxyl rich alicyclic moieties (CRAMs) or to aromatic constituents of NOM. We have calculated a ratio of CHn to CHα protons as a structural descriptor which showed significant inverse correlation to intensity of long wave absorbance assessed with a use of E4/ E6 ratio and the slope of absorption spectrum. The steric hindrance of aromatic chromophoric groups of the NOM ensemble by bulky nonfunctionalized aliphatic moieties (e.g., MDLT) was set as a hypothesis for explanation of this phenomenon. The bulky aliphatics might increase a distance between the interacting groups resulting in inhibition of electronic (e.g., charge-transfer) interactions in the NOM ensemble. The obtained relationships were further explored using Fourier transform mass spectrometry as complementary technique to 1H NMR spectroscopy. The data obtained on correlation of molecular composition of NOM with 1H NMR data and optical properties were very supportive of our hypothesis that capabilities of NOM ensemble of charge transfer interactions can be dependent on structural arrangement and relative abundance of nonabsorbing aliphatic moieties.


Assuntos
Compostos Orgânicos , Rios , Regiões Árticas , Espectroscopia de Ressonância Magnética , Prótons
9.
Sci Rep ; 7(1): 15548, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138423

RESUMO

The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Ficobilissomas/química , Synechocystis/química , Proteínas de Bactérias/genética , Carotenoides/efeitos da radiação , Cristalografia por Raios X , Cinética , Lasers , Luz , Modelos Moleculares , Ficobilissomas/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Espectrometria de Fluorescência , Synechocystis/genética
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 174: 223-229, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27918933

RESUMO

We addressed the possibility of using tyrosine (Tyr) fluorescence for monitoring conformational changes of proteins which are undetectable via tryptophan (Trp) fluorescence. The model objects, human (HSA) and bovine (BSA) serum albumins, contain one and two Trp residues, respectively, while Tyr is more uniformly distributed over their structure. The results of the investigation of albumins interaction with ethanol using intrinsic Trp and Tyr steady-state and time-resolved picosecond fluorescence indicated the presence of an intermediate at 10% (v/v) of ethanol in solution, that was supported by the results of extrinsic fluorescence measurements with the Nile Red dye. Based on the comparison of HSA and BSA Trp and Tyr fluorescence, it was suggested that conformational changes at low ethanol concentration are located in the domain III of albumins, which lacks tryptophan residues. The sensitivity of Tyr fluorescence to domain III alterations was further verified by studying albumins interaction with GdnHCl.


Assuntos
Corantes Fluorescentes/química , Soroalbumina Bovina/química , Albumina Sérica/química , Tirosina/química , Animais , Bovinos , Dicroísmo Circular , Fluorescência , Humanos , Nefelometria e Turbidimetria , Oxazinas/química , Domínios Proteicos , Triptofano/química
11.
Indoor Air ; 27(2): 377-385, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27538819

RESUMO

We propose a fluorescence method for protein content assessment in fine house dust, which can be used as an indicator of the hygienic state of occupied rooms. The results of the measurements performed with 30 house dust samples, including ultrafiltration experiments, strongly suggest that the fluorescence emission of house dust extracts excited at 350 nm is mainly due to protein fragments, which are presumably keratin hydrolysates. This suggestion is supported by several facts: (i) Spectral band shapes for all the samples under investigation are close and correspond to that of keratin; (ii) fluorescence intensity correlates with the total protein content as provided by Lowry assay; (iii) treatment of the samples with proteinase K, which induces keratin hydrolysis, results in fluorescence enhancement without changing fluorescence band shape; and (iv) Raman spectra of keratin and fine house dust samples exhibit a very similar structure. Based on the obtained results and literature data, we propose a hypothesis that keratin is a major substrate for fluorescence species in fine house dust, which are responsible for emission at 350-nm excitation.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental/métodos , Queratinas/análise , Espectrometria de Fluorescência/métodos , Fluorescência , Queratinas/química
12.
Photochem Photobiol Sci ; 15(7): 889-95, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27279258

RESUMO

Fluorescence quenching (FQ) is extensively used for quantitative assessment of partition coefficients (KOC) of polycyclic aromatic hydrocarbons (PAHs) to natural organic materials - humic substances (HS). The presence of bound PAHs with incompletely quenched fluorescence would lead to underestimation of the KOC values measured by this technique. The goal of this work was to prove the validity of this assumption using an original experimental setup, which implied FQ measurements upon excitation into two distinct vibronically coupled electronic states. Pyrene was used as a fluorescent probe, and aquatic fulvic acid (SRFA) and leonardite humic acid (CHP) were used as the humic materials with low and high binding affinity for pyrene, respectively. Excitation of pyrene into the forbidden (S0-S1) and allowed (S0-S2) electronic states yielded two pairs of nonidentical FQ curves. This was indicative of incomplete quenching of the bound pyrene, and the divergence of the two FQ curves was much more pronounced for CHP as compared to SRFA. The two component model of fluorescence response formation was proposed to estimate the KOC values from the data obtained. The resulting pyrene KOC value for CHP (220 ± 20) g L(-1) was a factor 3 higher compared to the KOC value determined with the use of the Stern-Volmer formalism (68 ± 2) g L(-1). At the same time for aquatic FA the difference in FQ curves was almost negligible, which enables the use of the Stern-Volmer formalism for weakly interacting HS and PAHs.

13.
Photosynth Res ; 130(1-3): 389-401, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27161566

RESUMO

Orange carotenoid protein (OCP) is a water-soluble photoactive protein responsible for a photoprotective mechanism of nonphotochemical quenching in cyanobacteria. Under blue-green illumination, OCP converts from the stable orange into the signaling red quenching form; however, the latter form could also be obtained by chemical activation with high concentrations of sodium thiocyanate (NaSCN) or point mutations. In this work, we show that a single replacement of tryptophan-288, normally involved in protein-chromophore interactions, by alanine, results in formation of a new protein form, hereinafter referred to as purple carotenoid protein (PCP). Comparison of resonance Raman spectra of the native photoactivated red form, chemically activated OCP, and PCP reveals that carotenoid conformation is sensitive to the structure of the C-domain, implicating that the chromophore retains some interactions with this part of the protein in the active red form. Combination of differential scanning fluorimetry and picosecond time-resolved fluorescence anisotropy measurements allowed us to compare the stability of different OCP forms and to estimate relative differences in protein rotation rates. These results were corroborated by hydrodynamic analysis of proteins by dynamic light scattering and analytical size-exclusion chromatography, indicating that the light-induced conversion of the protein is accompanied by a significant increase in its size. On the whole, our data support the idea that the red form of OCP is a molten globule-like protein in which, however, interactions between the carotenoid and the C-terminal domain are preserved.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cromatografia em Gel , Clonagem Molecular , Cianobactérias/fisiologia , Fluorescência , Polarização de Fluorescência , Fluorometria , Análise Espectral Raman , Synechocystis/fisiologia
14.
Photosynth Res ; 125(1-2): 167-78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25800518

RESUMO

Under high photon flux density of solar radiation, the photosynthetic apparatus can be damaged. To prevent this photodestruction, cyanobacteria developed special mechanisms of non-photochemical quenching (NPQ) of excitation energy in phycobilisomes. In Synechocystis, NPQ is triggered by the orange carotenoid protein (OCP), which is sensitive to blue-green illumination allowing it to bind to the phycobilisome reducing the flow of energy to the photosystems. Consequent decoupling of OCP and recovery of phycobilisome fluorescence in vivo is controlled by the so called fluorescence recovery protein (FRP). In this work, the role of the phycobilisome core components, apcD and apcF, in non-photochemical quenching and subsequent fluorescence recovery in the phycobilisomes of the cyanobacterium Synechocystis sp. PCC6803 has been investigated. Using a single photon counting technique, we have registered fluorescence decay spectra with picosecond time resolution during fluorescence recovery. In order to estimate the activation energy for the photocycle, spectroscopic studies in dependency on the temperature from 5 to 45 °C have been performed. It was found that fluorescence quenching and recovery were strongly temperature dependent for all strains exhibiting characteristic non-linear time courses. The rise of the fluorescence intensity during fluorescence recovery after NPQ can be completely described by the increase of the phycobilisome core fluorescence lifetime. It was shown that fluorescence recovery of apcD- and apcF-deficient mutants is characterized by a significantly lower activation energy barrier compared to wild type. This phenomenon indicates that apcD and apcF gene products may be required for proper interaction of FRP and OCP coupled to the phycobilisome core. In addition, we found that the rate of fluorescence recovery decreases with an increase of the non-photochemical quenching amplitude, probably due to depletion of substrate for the enzymatic reaction catalyzed by FRP.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Fluorescência , Luz , Ficobilissomas/efeitos da radiação , Synechocystis/efeitos da radiação , Temperatura
15.
Biochim Biophys Acta ; 1837(9): 1540-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24463052

RESUMO

As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures - from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 µmolphotonsm⁻²s⁻¹. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Fluorometria/métodos , Ficobilissomas/química , Synechocystis/metabolismo , Transferência de Energia , Fluorescência , Conformação Proteica
16.
Biofizika ; 52(5): 792-8, 2007.
Artigo em Russo | MEDLINE | ID: mdl-17969910

RESUMO

A method for determining the individual optical characteristics (fluorescence quantum yield, the rate constant and quantum yield of singlet-triplet conversion, excitation of fluorescence cross-section, extinction coefficient) and concentration correlations between the fluorescent forms of fluorescent proteins arising in the reaction of posttranslational chromophore formation has been developed, which is based on combined application of absorption spectroscopy and classical and nonlinear laser fluorimretry. The method allows one to determine the share of fluorescent forms in the mixture of chromoproteins. The individual optical characteristics of the red form of the fluorescent protein mRFP1 has been determined: the fluorescence quantum yield eta = 0.24 +/- 0.03; the extinction coefficient in the maximum of absorbance band (584 nm) epsilon = 213 +/- 40 mM(-1) cm(-1) (the cross-section of absorbance sigma = (8.2 +/- 1.5).10(-16) cm2); the constant of singlet-triplet conversion rate K32 = (0 +/- 0.6)-10970 s(-1). The part of the red form in the mixture of chromoproteins is 26 +/- 6%.


Assuntos
Proteínas de Fluorescência Verde/química , Lasers , Biossíntese de Proteínas , Proteínas Recombinantes/química , Proteínas de Fluorescência Verde/biossíntese , Proteínas Recombinantes/biossíntese , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA