Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dent Mater ; 40(9): 1425-1451, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942711

RESUMO

OBJECTIVES: This study aimed to determine the crystalline phase composition of 3-6 mol% yttria-stabilized zirconia (3-6YSZ), specifically investigating the presence of tetragonal (t), cubic (c), and/or additional yttria-rich tetragonal (t') phase. METHODS: Laboratory-fabricated specimens comprising 3-5YSZ, resembling translucent dental zirconia ceramics (TZ specimens), and a blend of 3YSZ and 8YSZ, representing a c-phase reference, were prepared. Additionally, 25 dental zirconia products stabilized with 3-6 mol% yttria were analyzed. Whole X-ray diffraction (XRD) patterns were obtained for Rietveld analysis, complemented by fine scanning in the 2θ region from 72º to 76º for qualitative phase analysis. Moreover, yttria concentrations in each specimen were determined using X-ray fluorescence (XRF) spectroscopy. RESULTS: In the 2θ region from 72º to 76º, TZ and dental zirconia product specimens displayed four peaks attributed to t- and t'-phases, but the c-phase peak was absent. Rietveld analysis of the whole XRD patterns, utilizing a t-t' model, demonstrated the t-phase fraction ranging from 86 mass% in 3YSZ to 11 mass% in 6YSZ. Rietveld analysis appeared reliable, as the yttria contents calculated based on lattice parameters aligned well with those measured by XRF. This study established that dental 3-6YSZ consisted of yttria-lean t- and yttria-rich t'-phases. SIGNIFICANCE: The present study enhances understanding of the crystalline structure of dental zirconia ceramics. Future crystallographic analyses of these ceramics should consider the presence of t- and t'-phases.


Assuntos
Cerâmica , Teste de Materiais , Difração de Raios X , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Cerâmica/química , Propriedades de Superfície , Espectrometria por Raios X , Cristalografia , Materiais Dentários/química
2.
J Mech Behav Biomed Mater ; 146: 106067, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567065

RESUMO

Monolithic dental prostheses made of 3-6 mol% yttria-stabilized zirconia (3-6YSZ) have gained popularity owing to their improved material properties and semi-automated fabrication processes. In this study, we aimed to evaluate the influence of mechanical surface treatments, such as polishing, grinding, and sandblasting, on the residual stress of 3-6YSZ used for monolithic prostheses in association with crystalline phase transformation. Plate specimens were prepared from five dental zirconia blocks: Aadva Zirconia ST (3YSZ), Aadva Zirconia NT (6YSZ), Katana HT (4YSZ), Katana STML (5YSZ), and Katana UTML (6YSZ). The specimens were either polished using 1, 3, or 9 µm diamond suspensions, ground using 15, 35, or 55 µm diamond discs, or sandblasted at 0.2, 0.3, or 0.4 MPa. The residual stress, crystalline phase, and hardness were analyzed using the cosα method, X-ray diffraction (XRD), and Vickers hardness test, respectively. Additionally, we analyzed the residual stress on the surfaces of monolithic zirconia crowns (MZCs) made of 4YSZ, 5YSZ, and 6YSZ, which were processed using clinically relevant procedures, including manual grinding, followed by polishing using a dental electric motor on the external surface, and sandblasting on the internal surface. Residual stress analysis demonstrated that grinding and sandblasting, particularly the latter, resulted in the generation of compressive residual stress on the surfaces of the plate specimens. XRD revealed that the ground and sandblasted specimens contained a larger amount of the rhombohedral phase than that of the polished specimens, which may be a cause of the residual stress. Sandblasting significantly increased the Vickers hardness compared to polishing, which may possibly be due to the generation of compressive residual stress. In the case of MZCs, compressive residual stress was detected not only on the sandblasted surface, but also on the polished surface. The difference in the residual stress between the plate and crown specimens may be related to the force applied during the automated and manual grinding and polishing procedures. Further studies are required to elucidate the effects of the compressive residual stress on the clinical performance of MZCs.


Assuntos
Ítrio , Zircônio , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Ítrio/química , Cerâmica/química , Diamante , Materiais Dentários , Polimento Dentário , Estresse Mecânico
3.
Curr Issues Mol Biol ; 44(3): 1353-1375, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35723314

RESUMO

The beneficial effects of polyphenols on metabolic disorders have been extensively reported. The interaction of these compounds with the gut microbiota has been the focus of recent studies. In this review, we explored the fundamental mechanisms underlying the beneficial effects of polyphenols in relation to the gut microbiota in murine models of metabolic disorders. We analyzed the effects of polyphenols on three murine models of metabolic disorders, namely, models of a high-fat diet (HFD)-induced metabolic disorder, dextran sulfate sodium (DSS)-induced colitis, and a metabolic disorder not associated with HFD or DSS. Regardless of the model, polyphenols ameliorated the effects of metabolic disorders by alleviating intestinal oxidative stress, improving inflammatory status, and improving intestinal barrier function, as well as by modulating gut microbiota, for example, by increasing the abundance of short-chain fatty acid-producing bacteria. Consequently, polyphenols reduce circulating lipopolysaccharide levels, thereby improving inflammatory status and alleviating oxidative imbalance at the lesion sites. In conclusion, polyphenols likely act by regulating intestinal functions, including the gut microbiota, and may be a safe and suitable therapeutic agent for various metabolic disorders.

4.
Antioxidants (Basel) ; 11(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35204100

RESUMO

Polyphenols are widely known for their antioxidant activity, i.e., they have the ability to suppress oxidative stress, and this behavior is mediated by the autoxidation of their phenolic hydroxyl groups. Postmenopausal osteoporosis is a common health problem that is associated with estrogen deficiency. Since oxidative stress is thought to play a key role in the onset and progression of osteoporosis, it is expected that polyphenols can serve as a safe and suitable treatment in this regard. Therefore, in this review, we aimed to elucidate the anti-osteoporotic mechanisms of polyphenols reported by in vivo studies involving the use of ovariectomized animals. We categorized the polyphenols as resveratrol, purified polyphenols other than resveratrol, or polyphenol-rich substances or extracts. Literature data indicated that resveratrol activates sirtuin 1, and thereafter, suppresses osteoclastogenic pathways, such as the receptor activator of the nuclear factor kappa B (RANK) ligand (RANKL) pathway, and promotes osteoblastogenic pathways, such as the wingless-related MMTV integration site pathway. Further, we noted that purified polyphenols and polyphenol-rich substances or extracts exert anti-inflammatory and/or antioxidative effects, which inhibit RANKL/RANK binding via the NF-κB pathway, resulting in the suppression of osteoclastogenesis. In conclusion, antioxidative and anti-inflammatory polyphenols, including resveratrol, can be safe and effective for the treatment of postmenopausal osteoporosis based on their ability to regulate the imbalance between bone formation and resorption.

5.
Antioxidants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36670878

RESUMO

Proanthocyanidins (PACs), which are oligomers or polymers of flavan-3ols with potent antioxidative activity, are well known to exert a variety of beneficial health effects. Nonetheless, their bioaccessibility and bioavailability have been poorly assessed. In this review, we focused on the metabolic fate of PACs through the digestive tract. When oligomeric and polymeric PACs are orally ingested, a large portion of the PACs reach the colon, where a small portion is subjected to microbial degradation to phenolic acids and valerolactones, despite the possibility that slight depolymerization of PACs occurs in the stomach and small intestine. Valerolactones, as microbiota-generated catabolites of PACs, may contribute to some of the health benefits of orally ingested PACs. The remaining portion interacts with gut microbiota, resulting in improved microbial diversity and, thereby, contributing to improved health. For instance, an increased amount of beneficial gut bacteria (e.g., Akkermansia muciniphila and butyrate-producing bacteria) could ameliorate host metabolic functions, and a lowered ratio of Firmicutes/Bacteroidetes at the phylum level could mitigate obesity-related metabolic disorders.

6.
J Mech Behav Biomed Mater ; 125: 104890, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673358

RESUMO

Monolithic dental prostheses fabricated from 5 mol% yttria-stabilized zirconia (5YZ) have been developed to improve the translucency of conventional 3 mol% yttria-stabilized zirconia. In this study, we aimed to evaluate the influence of airborne-particle abrasion (APA) and low-temperature degradation (LTD) on the mechanical properties of 5YZ in association with the crystalline phase transformation. In total, 120 disc-shaped specimens of two brands of 5YZ (Lava Esthetic and Katana UTML) were prepared. The specimens were divided into four groups (n = 15 for each group): (i) control, (ii) APA, (iii) LTD, and (iv) APA + LTD groups. APA was performed with 50 µm alumina particles, and LTD was induced by autoclaving at 134 °C for 50 h. The biaxial flexural strength of the specimens was assessed using a piston-on-three-ball test according to ISO 6872:2015, and Vickers hardness was determined using a microhardness tester. The crystalline phase was analyzed by the Rietveld refinement of X-ray diffraction patterns. APA significantly increased the flexural strength of the Lava Esthetic specimens, whereas LTD hardly affected the strength of both materials. APA and APA + LTD significantly increased the Vickers hardness of both materials. According to Rietveld analysis, the pseudocubic phase was predominant in both materials, i.e., 66 mass% and 81 mass% in the Lava Esthetic and Katana UTML specimens, respectively. APA induced the rhombohedral phase at approximately 37 mass% in both materials, while LTD induced the monoclinic phase at 2.8 mass% in the Lava Esthetic specimens and 0.9 mass% in the Katana UTML specimens. APA + LTD weakly affected the amount of the rhombohedral phase but slightly increased the amount of the monoclinic phase. These findings suggest that APA may improve the mechanical properties of 5YZ, particularly hardness, via the generation of the rhombohedral phase. In contrast, the influence of LTD on the mechanical and microstructural properties of 5YZ was limited.


Assuntos
Cerâmica , Ítrio , Temperatura , Zircônio
7.
Eur J Oral Sci ; 129(6): e12828, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34674326

RESUMO

This study analyzed the impact of adhesive primer and light-curing on the polymerization kinetics of urethane dimethacrylate-based self-adhesive resin cement combined with free radical reaction. Specimens were prepared by mixing the cement paste with or without adhesive primer. Subsequently, specimens were light-cured or set without light-curing. The degree of conversion (DC), Vickers hardness (Hv), and free radical concentrations were repeatedly measured up to 168 h after the curing initiation. Irrespective of the curing procedures, DC, Hv, and free radical concentration rapidly increased during the initial 30 min of curing. The specimens cured with adhesive primer and/or light-curing generally showed higher values of DC, Hv, and radical concentration than those set by chemical curing alone, especially during the initial polymerization phase. Kinetic analysis using a linear mixed model revealed that the adhesive primer had a higher coefficient estimate than light-curing, indicating that the former had a higher impact on the polymerization. Additionally, the adhesive primer alleviated the Hv reduction caused by water and air during the initial polymerization phase, although light-curing hardly prevented the polymerization inhibition. Therefore, we suggest that application of adhesive primer is beneficial to achieve higher degree of conversion and better mechanical properties of self-adhesive resin cements by enhancing free radical reactions.


Assuntos
Cura Luminosa de Adesivos Dentários , Cimentos de Resina , Lâmpadas de Polimerização Dentária , Cimentos Dentários , Radicais Livres , Dureza , Cinética , Teste de Materiais , Polimerização
8.
J Photochem Photobiol B ; 212: 112042, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33027729

RESUMO

Hydrogen peroxide photolysis-based antimicrobial chemotherapy that utilizes ultraviolet-A irradiation (UVA-H2O2 photolysis) has been previously proposed as a method of treatment of cariogenic biofilm. Therefore, in the present study, we aimed to assess time-dependent reactions in the dental pulp of rats after UVA-H2O2 photolysis. Maxillary first molars were treated. UVA irradiation (wavelength: 365 nm) with 3 wt% H2O2 was performed for 90 s at a radiant emittance of 500-2000 mW/cm2 on the rats for 3 consecutive days or only 1 day. The animals were sacrificed at Days 1, 3, 7, and 21 after the treatment for the histological evaluation of inflammatory cells and immunohistochemistry of heat shock protein (HSP)-25, a marker of odontoblasts. Tertiary dentin formation was evaluated at Day 21 by histomorphometry and micro-CT analysis. UVA-H2O2 photolysis elicited little infiltration of inflammatory cells, but disturbances in the odontoblast layer and/or presence of localized degenerative tissue were observed on Day 3. This condition was followed by a healing process that was characterized by the reappearance of HSP-25 positive odontoblast-like cells at Day 7 and tertiary dentin formation at Day 21. The amount of tertiary dentin formed was dependent on the intensity of treatment; repeated UVA irradiations of H2O2 at 2000 mW/cm2 resulted in the largest amount of tertiary dentin formation at the pulp horn regions. Our findings suggest that UVA-H2O2 photolysis treatment can be used to treat dental caries clinically because the post-treatment inflammatory reaction was minimal and tertiary dentin formation was substantial, which may prove effective in protecting dental pulp from external irritants. As a cautionary consideration, the radiant emittance of the UVA irradiation should be carefully optimized before clinical application.


Assuntos
Anti-Infecciosos/farmacologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Fotólise , Raios Ultravioleta , Animais , Polpa Dentária/metabolismo , Polpa Dentária/microbiologia , Proteínas de Choque Térmico HSP27/metabolismo , Peróxido de Hidrogênio/química , Ratos , Fatores de Tempo
9.
J Mech Behav Biomed Mater ; 111: 103974, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32769070

RESUMO

Monolithic dental prostheses fabricated from 3 mol.% yttria-stabilized zirconia (3YZ) are becoming increasingly popular. Recently, 5 mol.% yttria-stabilized zirconia (5YZ) which significantly improves the translucency of 3YZ has been prepared. However, its mechanical and microstructural properties, especially those affected by low-temperature degradation (LTD), have not been fully elucidated yet. The objective of the present study was to establish the relationship between the flexural strength of 5YZ with or without autoclave-induced LTD and its microstructural properties. For this purpose, a total of 320 bar-shaped specimens were cut from 5YZ and 3YZ blocks, and half of the specimens in each group were autoclaved at 134 °C for 50 h. Their flexural strengths were determined by conducting three-point bending tests, and the obtained results were analyzed by the Weibull statistical method. Grain sizes and crystalline structures of the specimens were analyzed by scanning electron microscopy (SEM) and X-ray diffraction, respectively. Additionally, the LTD-induced phase transformation was examined by Raman microscopy and cross-sectional surface analysis. The characteristic strengths of 5YZ and 3YZ were approximately 620 and 950 MPa, respectively, and 5YZ was found to be more resistant to LTD in terms of phase transformation than 3YZ. However, a low amount of the monoclinic phase was detected even in 5YZ after 50 h of autoclaving, which significantly decreased its flexural strength and reliability. The results of SEM analysis revealed that 5YZ was composed of two distinct regions: a dominant matrix with large grains (median size: 0.8 µm) and scattered areas with small grains (median size: 0.4 µm). Phase transformation analysis and fractography data indicated that the small-grain region was strongly affected by LTD and likely represented a fracture origin. The described properties should be considered during the clinical application of monolithic 5YZ dental prostheses.


Assuntos
Ítrio , Zircônio , Cerâmica , Estudos Transversais , Materiais Dentários , Teste de Materiais , Reprodutibilidade dos Testes , Estresse Mecânico , Propriedades de Superfície , Difração de Raios X
10.
Sci Rep ; 10(1): 8812, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483182

RESUMO

The purpose of the present study was to confirm if proanthocyanidin-rich grape seed extract (GSE) had the ability to improve bone health such as bone loss, bone healing, and implant osseointegration (defined as the direct connection between bone tissue and an implant) in ovariectomized (OVX) animals. We demonstrated that daily oral administration of GSE prevented bone loss in the lumbar vertebrae and femur in OVX mice. In addition, osteoclastogenesis in the lumbar spine bone of OVX mice, as assessed by histological and histomorphometric analyses, was accelerated but GSE prevented this dynamization, suggesting that GSE could counteract OVX-induced accelerated osteoclastogenic activity. In rats, OVX clearly impaired the healing of defects created on the calvaria, and GSE overcame this OVX-impaired healing. In the same way, osseointegration of a tibial implant in rats was retarded by OVX, and GSE counteracted the OVX-induced poor osseointegration, likely promoting bone healing by preventing imbalanced bone turnover. These results suggest that orally administered GSE improved implant osseointegration by mitigating the impaired bone health induced by OVX as a model of estrogen deficiency.


Assuntos
Prótese Ancorada no Osso , Extrato de Sementes de Uva/uso terapêutico , Osseointegração/efeitos dos fármacos , Osteoporose Pós-Menopausa/prevenção & controle , Proantocianidinas/uso terapêutico , Animais , Remodelação Óssea/efeitos dos fármacos , Estrogênios/deficiência , Estrogênios/fisiologia , Feminino , Fêmur/ultraestrutura , Extrato de Sementes de Uva/farmacologia , Humanos , Camundongos , Osteoclastos , Osteoporose Pós-Menopausa/tratamento farmacológico , Ovariectomia , Proantocianidinas/farmacologia , Ratos , Ratos Wistar , Tíbia/fisiopatologia , Tíbia/cirurgia , Titânio , Microtomografia por Raio-X
11.
Sci Rep ; 8(1): 12888, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150642

RESUMO

In the present study, we evaluated the prooxidative mode of action of photoirradiated (+)-catechin at 400 nm in relation to reactive oxygen species generation and its possible application to disinfection. Photoirradiation of (+)-catechin at a concentration of 1 mg/mL yielded not only hydrogen peroxide (H2O2) but hydroxyl radical (·OH) in a total amount of approximately 20 µM in 10 min. As a result, photoirradiated catechin killed Staphylococcus aureus, and a > 5-log reduction in viable bacteria counts was observed within 20 min. Liquid chromatography-high-resolution-electrospray ionization-mass spectrometry showed that photoirradiation decreased the (+)-catechin peak (molecular formula C15H14O6) whilst it increased two peaks of a substance with the molecular formula C15H12O6 with increasing irradiation time. Nuclear magnetic resonance analysis revealed that the two C15H12O6 peaks were allocated to intramolecular cyclization products that are enantiomers of each other. These results suggest that photoirradiation induces oxidation of (+)-catechin resulting in the reduction of oxygen to generate H2O2. This H2O2 is then homolytically cleaved to ·OH, and alongside this process, (+)-catechin is finally converted to two intramolecular cyclization products that are different from the quinone structure of the B ring, as proposed previously for the autoxidation and enzymatic oxidation of catechins.


Assuntos
Catequina/metabolismo , Oxidantes Fotoquímicos/metabolismo , Oxirredução , Antibacterianos/química , Antibacterianos/farmacologia , Catequina/química , Catequina/farmacologia , Cromatografia Líquida , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxidantes Fotoquímicos/química , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA