Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 18693-18702, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572967

RESUMO

Supported particulate noble-metal catalysts are widely used in industrial catalytic reactions. However, these metal species, whether in the form of nanoparticles or highly dispersed entities, tend to aggregate during reactions, leading to a reduced activity or selectivity. Addressing the frequent necessity for the replacement of industrial catalysts remains a significant challenge. Herein, we demonstrate the feasibility of the 'regenerable catalytic system' exemplified by selective catalytic oxidation of ammonia (NH3-SCO) employing Ag/Al2O3 catalysts. Results demonstrate that our highly dispersed Ag catalyst (Ag HD) maintains >90% N2 selectivity at 80% NH3 conversion and >80% N2 selectivity at 100% NH3 conversion after enduring 5 cycles of reducible aggregation and oxidative dispersion. Moreover, it consistently upholds over 98% N2 selectivity at 100% NH3 conversion after 10 cycles of Ar treatment. During the aggregation-dispersion process, the Ag HD catalyst intentionally aggregated into Ag nanoparticles (Ag NP) after H2 reduction and exhibited remarkable regenerable capabilities, returning to the Ag HD state after calcination in the air. This structural evolution was characterized through in situ transmission electron microscopy, atomically resolved high-angle annular dark-field scanning transmission electron microscopy, and X-ray absorption spectroscopy, revealing the on-site oxidative dispersion of Ag NP. Additionally, in situ diffuse reflectance infrared Fourier transform spectroscopy provided insights into the exceptional N2 selectivity on Ag HD catalysts, elucidating the critical role of NO+ intermediates. Our findings suggest a sustainable and cost-effective solution for various industry applications.

2.
Org Lett ; 26(15): 2902-2907, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38572805

RESUMO

We report herein that supported gold catalysts efficiently promote the borylation of stable C(sp3)-O bonds of alkyl esters. The use of a disilane as an electron source and gold nanoparticles as a single-electron transfer catalyst is the key to generating alkyl radicals via the homolysis of stable C(sp3)-O bonds, thereby enabling cross-coupling between bis(pinacolato)diboron and linear and cyclic alkyl esters to afford the diverse alkyl boronates.

3.
Angew Chem Int Ed Engl ; 63(20): e202403092, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415808

RESUMO

The hydrogenolysis of oxygenates such as alcohols and ethers is central to the biomass valorization and also a valuable transformation in organic synthesis. However, a mild and efficient catalyst system for the hydrogenolysis of a large variety of alcohols and ethers with various functional groups is still underdeveloped. Here, we report an aluminum metaphosphate-supported Pt nanoparticles (Pt/Al(PO3)3) for the hydrogenolysis of a wide variety of primary, secondary, and tertiary alkyl and benzylic alcohols, and dialkyl, aryl alkyl, and diaryl ethers, including biomass-derived furanic compounds, under mild conditions (0.1-1 atm of H2, as low as 70 °C). Mechanistic studies suggested that H2 induces formation of the surface Brønsted acid sites via its cleavage by supported Pt nanoparticles. Accordingly, the high efficiency and the wide applicability of the catalyst system are attributed to the activation and cleavage of C-O bonds by the hydrogen-induced Brønsted acid sites with the assistance of Lewis acidic Al sites on the catalyst surface. The high efficiency of the catalyst implies its potential application in energy-efficient biomass valorization or fine chemical synthesis.

4.
ACS Mater Au ; 3(5): 456-463, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089094

RESUMO

We developed a method for preparing catalysts by using hybrid clustering to form a high density of metal/oxide interfacial active sites. A Rh-Mo hybrid clustering catalyst was prepared by using a hybrid cluster, [(RhCp*)4Mo4O16] (Cp* = η5-C5Me5), as the precursor. The activities of the Rh-Mo catalysts toward the NO-CO-C3H6-O2 reaction depended on the mixing method (hybrid clustering > coimpregnation ≈ pristine Rh). The hybrid clustering catalyst also exhibited high durability against thermal aging at 1273 K in air. The activity and durability were attributed to the formation of a high-density of Rh/MoOx interfacial sites. The NO reduction mechanism on the hybrid clustering catalyst was different from that on typical Rh catalysts, where the key step is the N-O cleavage of adsorbed NO. The reducibility of the Rh/MoOx interfacial sites contributed to the partial oxidation of C3H6 to form acetate species, which reacted with NO+O2 to form N2 via the adsorbed NCO species. The formation of reduced Rh on Rh4Mo4/Al2O3 was not as essential as that on typical Rh catalysts; this explained the improvement in durability.

5.
ACS Org Inorg Au ; 3(5): 283-290, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37810415

RESUMO

To form high-density metal/oxide interfacial active sites, we developed a catalyst preparation method based on hybrid clustering. An iridium-molybdenum (Ir-Mo) hybrid clustering catalyst was prepared by using the hybrid cluster [(IrCp*)4Mo4O16] (Cp* = η5-C5Me5) as the precursor. The Ir-Mo hybrid clustering catalyst selectively reduced the nitro group in the hydrogenation of 4-nitrostyrene, whereas the coimpregnated Ir-Mo catalyst reduced both the nitro and vinyl groups nonselectively. The hybrid clustering catalyst also exhibited high selectivity, even at a high Ir loading (5 wt %), in contrast to Ir/MoO3, which exhibited high selectivity only at low Ir loadings (<0.3 wt %). In situ X-ray absorption spectroscopy analysis revealed that oxygen vacancies were formed at the Ir/MoOx interface in the presence of H2. We concluded that a high-density Ir/MoOx interface contributes to the preferential adsorption of nitro groups on vacant sites, promoting the selective hydrogenation of nitro groups.

6.
Nat Commun ; 14(1): 2885, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210396

RESUMO

Efficient ethylene (C2H4) removal below room temperatures, especially near 0 °C, is of great importance to suppress that the vegetables and fruits spoil during cold-chain transportation and storage. However, no catalysts have been developed to fulfill the longer-than-2-h C2H4 removal at this low temperature effectively. Here we prepare gold-platinum (Au-Pt) nanoalloy catalysts that show robust C2H4 (of 50 ppm) removal capacity at 0 °C for 15 days (360 h). We find, by virtue of operando Fourier transformed infrared spectroscopy and online temperature-programmed desorption equipped mass spectrometry, that the Au-Pt nanoalloys favor the formation of acetate from selective C2H4 oxidation. And this on-site-formed acetate intermediate would partially cover the catalyst surface at 0 °C, thus exposing active sites to prolong the continuous and effective C2H4 removal. We also demonstrate, by heat treatment, that the performance of the used catalysts will be fully recovered for at least two times.

7.
J Am Chem Soc ; 145(8): 4613-4625, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802588

RESUMO

Since C(sp3)-O bonds are a ubiquitous chemical motif in both natural and artificial organic molecules, the universal transformation of C(sp3)-O bonds will be a key technology for achieving carbon neutrality. We report herein that gold nanoparticles supported on amphoteric metal oxides, namely, ZrO2, efficiently generated alkyl radicals via homolysis of unactivated C(sp3)-O bonds, which consequently promoted C(sp3)-Si bond formation to give diverse organosilicon compounds. A wide array of esters and ethers, which are either commercially available or easily synthesized from alcohols participated in the heterogeneous gold-catalyzed silylation by disilanes to give diverse alkyl-, allyl-, benzyl-, and allenyl silanes in high yields. In addition, this novel reaction technology for C(sp3)-O bond transformation could be applied to the upcycling of polyesters, i.e., the degradation of polyesters and the synthesis of organosilanes were realized concurrently by the unique catalysis of supported gold nanoparticles. Mechanistic studies corroborated the notion that the generation of alkyl radicals is involved in C(sp3)-Si coupling and the cooperation of gold and an acid-base pair on ZrO2 is responsible for the homolysis of stable C(sp3)-O bonds. The high reusability and air tolerance of the heterogeneous gold catalysts as well as a simple, scalable, and green reaction system enabled the practical synthesis of diverse organosilicon compounds.

8.
Chem Commun (Camb) ; 59(3): 286-289, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484256

RESUMO

The low-temperature activation of methane is highly important as a reaction that can dissociate the strongest C-H bond and convert it into useful compounds. This study demonstrated that supported platinum oxide was found to activate methane near room temperature and selectively afford methanol in the presence of oxygen.

9.
ACS Environ Au ; 2(4): 354-362, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37101968

RESUMO

The phase separation between a liquid amine and the solid carbamic acid exhibited >99% CO2 removal efficiency under a 400 ppm CO2 flow system using diamines bearing an aminocyclohexyl group. Among them, isophorone diamine [IPDA; 3-(aminomethyl)-3,5,5-trimethylcyclohexylamine] exhibited the highest CO2 removal efficiency. IPDA reacted with CO2 in a CO2/IPDA molar ratio of ≥1 even in H2O as a solvent. The captured CO2 was completely desorbed at 333 K because the dissolved carbamate ion releases CO2 at low temperatures. The reusability of IPDA under CO2 adsorption-and-desorption cycles without degradation, the >99% efficiency kept for 100 h under direct air capture conditions, and the high CO2 capture rate (201 mmol/h for 1 mol of amine) suggest that the phase separation system using IPDA is robust and durable for practical use.

10.
ACS Appl Mater Interfaces ; 13(19): 22332-22340, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33840186

RESUMO

We developed a method for preparing catalysts based on hybrid clusters that formed high-density metal/oxide interfacial active sites. A Ru-V hybrid cluster, [{Ru(cym)}4V6O19] (cym = p-cymene), was used as a precursor to prepare Ru-V catalysts. Transmission electron microscopy and X-ray absorption spectroscopy (XAS) analyses revealed that composite nanoparticles of Ru and V were formed through hybrid clustering, while conventional coimpregnation of Ru and V afforded separate nanoparticles. The activity of the Ru-V catalysts toward N-alkylation of amines with alcohols depended on the mixing method (hybrid clustering > coimpregnation > physical mixing ≈ pristine Ru). The formation mechanism of the composite nanoparticles from the hybrid cluster was revealed using in situ XAS analysis. Finally, we proposed a simple but efficient catalyst preparation method, based on in situ formation of hybrid cluster precursors combined with a conventional coimpregnation method.

11.
Angew Chem Int Ed Engl ; 60(2): 624-629, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33078542

RESUMO

The heterogeneous metal-organic framework Bi-BTC successfully catalyzed the synthesis of para-xylene from bio-based 2,5-dimethylfuran and acrylic acid in a promising yield (92 %), under relatively mild conditions (160 °C, 10 bar), and with a low reaction-energy barrier (47.3 kJ mol-1 ). The proposed reaction strategy also demonstrates a remarkable versatility for furan derivatives such as furan and 2-methylfuran.

12.
RSC Adv ; 10(61): 37538-37544, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521259

RESUMO

Gas-phase glycerol dehydration over WO3/Al2O3 catalysts was investigated. WO3 loading on γ-Al2O3 significantly affected the yield of acrolein and the catalyst with 20 wt% WO3 loading showed the highest activity. The WO3/Al2O3 catalyst with 20 wt% WO3 loading showed higher activity and durability than the other supported WO3 catalysts and zeolites. The number of Brønsted acid sites and mesopores of the WO3/Al2O3 catalyst did not decrease after the reaction, suggesting that glycerol has continuous access to Brønsted acid sites inside the mesopores of WO3/Al2O3, thereby sustaining a high rate of formation of acrolein. Dehydration under O2 flow further increased the durability of the WO3/Al2O3 catalyst, enabling the sustainable formation of acrolein. In addition, the WO3/Al2O3 catalyst with 20 wt% WO3 loading showed high activity for the dehydration of various polyols to afford the corresponding products in high yield.

13.
ACS Omega ; 4(2): 2596-2609, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459495

RESUMO

Density functional theory calculations here elucidated that Cu38-catalyzed NO reduction by CO occurred not through NO dissociative adsorption but through NO dimerization. NO is adsorbed to two Cu atoms in a bridging manner. NO adsorption energy is much larger than that of CO. N-O bond cleavage of the adsorbed NO molecule needs a very large activation energy (ΔG°‡). On the other hand, dimerization of two NO molecules occurs on the Cu38 surface with small ΔG°‡ and very negative Gibbs reaction energy (ΔG°) to form ONNO species adsorbed to Cu38. Then, a CO molecule is adsorbed at the neighboring position to the ONNO species and reacts with the ONNO to induce N-O bond cleavage with small ΔG°‡ and very negative ΔG°, leading to the formation of N2O adsorbed on Cu38 and CO2 molecule in the gas phase. N2O dissociates from Cu38, and then it is readsorbed to Cu38 in the most stable adsorption structure. N-O bond cleavage of N2O easily occurs with small ΔG°‡ and significantly negative ΔG° to form the N2 molecule and the O atom adsorbed on Cu38. The O atom reacts with the CO molecule to afford CO2 and regenerate Cu38, which is rate-determining. N2O species was experimentally observed in Cu/γ-Al2O3-catalyzed NO reduction by CO, which is consistent with this reaction mechanism. This mechanism differs from that proposed for the Rh catalyst, which occurs via N-O bond cleavage of the NO molecule. Electronic processes in the NO dimerization and the CO oxidation with the O atom adsorbed to Cu38 are discussed in terms of the charge-transfer interaction with Cu38 and Frontier orbital energy of Cu38.

14.
J Am Chem Soc ; 141(4): 1636-1645, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30592417

RESUMO

Sulfo-functionalized siloxane gels with a variety of surface hydrophobicities were fabricated to elucidate the effect of the environment surrounding the Brønsted acid site on their catalytic activity for the hydrolysis of organic molecules. A detailed structural analysis of these siloxane gels by elemental analysis, X-ray photoelectron spectroscopy, Fourier-transformed infrared (FT-IR), and 29Si MAS NMR revealed the formation of gel catalysts with a highly condensed siloxane network, which enabled us to quantitatively evaluate the hydrophobicity of the environment surrounding the catalytically active sulfo-functionality. A sulfo group in a highly hydrophobic environment exhibited excellent catalytic turnover frequency for the hydrolysis of acetate esters with a long alkyl chain, whereas not only conventional solid acid catalysts but also liquid acids showed quite low catalytic activity. Detailed kinetic studies corroborated that the adsorption of oleophilic esters at the Brønsted acid site was facilitated by the surrounding hydrophobic environment, thus significantly promoting hydrolysis under aqueous conditions. Furthermore, sulfo-functionalized siloxane gels with a highly hydrophobic surface showed excellent catalytic activity for the hydrolytic deprotection of silyl ethers.

15.
Angew Chem Int Ed Engl ; 57(21): 6136-6140, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29571218

RESUMO

A Pd-Au alloy efficiently catalyzed the [2+2+2] cycloaddition of substituted alkynes. Whereas monometallic Pd and Au catalysts were totally ineffective, Pd-Au alloy nanoparticle catalysts with a low Pd/Au molar ratio showed high activity to give the corresponding polysubstituted arenes in high yields. A variety of substituted alkynes participated in various modes of cycloaddition under Pd-Au alloy catalysis. The Pd-Au alloy catalysts exhibited high air tolerance and reusability.

16.
J Am Chem Soc ; 140(1): 176-184, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29224338

RESUMO

The dynamic behavior of Rh species in 1 wt% Rh/Al2O3 catalyst during the three-way catalytic reaction was examined using a micro gas chromatograph, a NOx meter, a quadrupole mass spectrometer, and time-resolved quick X-ray absorption spectroscopy (XAS) measurements at a public beamline for XAS, BL01B1 at SPring-8, operando. The combined data suggest different surface rearrangement behavior, random reduction processes, and autocatalytic oxidation processes of Rh species when the gas is switched from a reductive to an oxidative atmosphere and vice versa. This study demonstrates an implementation of a powerful operando XAS system for heterogeneous catalytic reactions and its importance for understanding the dynamic behavior of active metal species of catalysts.

17.
Chem Commun (Camb) ; 53(51): 6937-6940, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28612887

RESUMO

Pt/SiO2 reduced at 1073 K exhibited a high catalytic activity in propane dehydrogenation, primarily attributed to the electronic modification of Pt nanoparticles by a strong metal-support interaction (SMSI) effect. The SMSI was observed in the Pt/SiO2 system following direct reduction in H2 (>773 K), and was found to increase with increasing reduction temperature.

18.
ACS Omega ; 2(9): 6167-6173, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457863

RESUMO

Dehydrogenative synthesis of esters from primary alcohols proceeded efficiently over a ZrO2-supported copper catalyst. A variety of esters were obtained from primary alcohols as well as diols in good to high yields. The key to the dehydrogenative synthesis of esters is the concerted effect of the acid-base pairs on ZrO2 and metallic copper.

19.
J Org Chem ; 82(2): 1231-1239, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28001406

RESUMO

A selective and atom-economical synthesis of isoindolinones is described. This novel synthetic strategy involves two catalytic reactions: the ruthenium-catalyzed regioselective alkenylation of aromatic C-H bond of aromatic amides with internal alkynes, and subsequent intramolecular cyclization of the resulting alkene with amide functionalities. The addition of only a catalytic amount of bases is required for efficient construction of the desired isoindolinones, and no byproducts are formed in the tandem catalytic reactions. Various kinds of aromatic amides and internal alkynes can be used in the present reactions, and the corresponding isoindolinones bearing a quaternary carbon at the C3 position are obtained in good to high yields.

20.
Angew Chem Int Ed Engl ; 55(1): 278-82, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26509649

RESUMO

Intermolecular [2+2+1] carbonylative cycloaddition of aldehydes with alkynes and subsequent oxidation to γ-hydroxybutenolides is achieved using a supported ruthenium catalyst. A ceria-supported ruthenium catalyst promotes the reaction efficiently, even with an ambient pressure of CO or without external CO, thus giving the corresponding γ-hydroxybutenolide derivatives in good to high yields. Moreover this catalyst can be reused with no loss of activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA