Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Solut ; : 10482911241259515, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847133

RESUMO

The annual occupational doses for workers at the Ghana Research Reactor-1 facility were assessed for the period 2018-2021. The dose records of monitored staff were retrieved and analysis done for dose distribution and collective effective doses. Thermoluminiscent dosimeters were used to monitor the occupational exposures. The dosimeters were evaluated for the cumulative radiation dose levels using the Harshaw 6600 TLD reader system. Annual dose of 1.52 mSv/year was the maximum acquired by an individual. An annual average effective dose range of 0.20-1.36 mSv was determined for all workers. The annual total collective effective dose was established to be in the range of 0.40-10.08 man-Sv. The 20 mSv annual limit for occupational exposure was not exceeded for monitored workers. The assessment shows that the GHARR-1 facility, in terms of radiation health effects, is a favorable environment for workers since exposures are mostly below occupational exposure limit.

2.
Heliyon ; 9(6): e16580, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287616

RESUMO

The growing interest in fast reactors demands further innovative technologies to enhance their safety and reliability. Understanding thermal hydraulic activities required for advanced reactor technology in design and development is key. However, knowledge of Heavy Liquid Metal (HLM) coolants technology is not mature. The liquid metal-cooled facilities are required experimental platforms for studying HLM technology. As such, efficient thermal hydraulic experimental result is important in the accurate validation of numerical results. In this vein, there is a need to closely review existing thermo-hydraulic studies in HLM test facilities and the test sections. This review aims to assess existing Lead-cooled Fast Reactor (LFR) research facilities, numerical and validation works and Liquid Metal-cooled Fast Reactor (LMFR) databases around the world in the last two decades. Thus, recent thermal hydraulic research studies on experimental facilities and numerical research that support the design and development of LFRs are discussed. This review paper highlights thermal hydraulic issues and developmental objectives of HLM, briefly describes experimental facilities, experimental campaigns and numerical activities, and identifies research key findings, achievements and future research direction in HLM cooled reactors. This review will enhance knowledge and improve advanced nuclear reactor technology that ensures a sustainable, secure, clean and safe energy future.

3.
Heliyon ; 5(11): e02927, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31844770

RESUMO

There are heat transfer correlations for heat transfer analysis in single tube geometries after several experimental and theoretical heat transfer studies in these single tube geometries. This is not the case for heat transfer analysis in rod bundle geometry with regard to proposed square fuel assembly of the Supercritical-Water-Cooled Reactor (SCWR) European Atomic Energy (EURATOM) design. Thus limited heat transfer studies exist on rod bundle geometry at supercritical pressures. Heat transfer correlations with accurate prediction capabilities of coolant and wall temperatures will be helpful in carrying out heat transfer studies at supercritical pressures. This paper presents the performance of twelve selected heat transfer correlations assessed on the 1/8th bare square fuel assembly of the SCWR EURATOM design using Simulation of Turbulent flow in Arbitrary Regions Computational Continuum Mechanics C ++ based code (STAR-CCM + CFD code). The obtained numerical results were compared with the results obtained by Waata numerical experimentation. Overall, the Cheng et al. correlation provided the most satisfying prediction for the wall temperatures in all the sub-channels and captured closely Wataa's Numerical data. The maximum wall temperature was obtained in sub-channel 9, the hottest sub-channel and exceeded the design limit 620 °C by 60 °C for the Cheng correlation. The difference in temperature between the hottest and coldest sub-channels 9 and 1 respectively was approximately 80 °C. It was found that Cheng correlation is best suited for heat transfer prediction in rod bundle geometry at supercritical pressures with regard to the proposed square fuel assembly of the SCWR EURATOM design. It was also found that the different numerical tools adopted for this study and Waata study were able to capture the trends of normal, enhanced and deteriorated heat transfer regimes normally observed at supercritical pressures. Nevertheless, experimental investigations involving rod bundles adopted in this study should be conducted to validate the results obtained numerically and address the inconsistency of the conclusions drawn when compared with Waata data and other similar studies.

4.
Heliyon ; 3(11): e00453, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29264412

RESUMO

Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA