Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36014201

RESUMO

The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT-photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed.

2.
Nanomaterials (Basel) ; 12(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630976

RESUMO

In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications. This review focuses on recent developments in the design and photocatalytic applications of metal-doped GCN-based nanomaterials in CO2 photoreduction, water splitting toward hydrogen production, bacterial disinfection, and organic pollutant degradation. Additionally, this review discusses various methods of using GCN-based materials to optimize dye sensitization, metal deposition, ion doping, and their environmental applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA