Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Oncoimmunology ; 13(1): 2290799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125720

RESUMO

There has been growing interest in the role of B cells in antitumour immunity and potential use in adoptive cellular therapies. To date, the success of such therapies is limited. The intrinsic capacity of B cells to specifically activate tumour-specific CD4+ T cells in vivo via TCR-dependent interactions remains poorly defined. We have developed an in vivo tumour model that utilizes MHCII I-E restriction which limits antigen presentation to tumour-specific CD4 T cells to either tumour-specific B cells or host myeloid antigen presenting cells (APCs) in lymphopenic RAG-/-mice. We have previously shown that these naive tumour-specific CD4+ T cells can successfully eradicate established tumours in this model when activated by host APCs. When naïve tumour-specific B cells are the only source of I-E+ APC, very limited proliferation of naïve CD4+ T cells is observed, whereas host I-E+ APCs are potent T cell activators. B cells pre-activated with an anti-CD40 agonistic antibody in vivo support increased T cell proliferation, although far less than host APCs. CD4+ T cells that have already differentiated to an effector/central memory phenotype proliferate more readily in response to naïve B cells, although still 100-fold less than in response to host APCs. This study demonstrates that even in a significantly lymphopenic environment, myeloid APCs are the dominant primary activators of tumour-specific T cells, in contrast to the very limited capacity of tumour-specific B cells. This suggests that future anti-tumour therapies that incorporate activated B cells should also include mechanisms that activate host APCs.


Assuntos
Células Apresentadoras de Antígenos , Neoplasias , Camundongos , Animais , Células Apresentadoras de Antígenos/fisiologia , Linfócitos T CD4-Positivos , Ativação Linfocitária , Linfócitos B
2.
Am J Hematol ; 98(11): E312-E314, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37646570

RESUMO

More than 1300 women with breast implants have developed an anaplastic large cell lymphoma (ALCL) in fluid (seroma) around their implant. More often, seromas are due to benign causes, for example, capsule contracture, leakage, or trauma. Our report in American Journal of Hematology identified several cytokines (IL-9, IL-10, IL-13) as significantly elevated only in seromas due to ALCL. We further showed that the most robust biomarker, IL-10, could be detected by a lateral flow assay (similar to COVID detection) within minutes allowing physicians to quickly plan management, eliminate or reduce costly testing and patient time away from family. Early detection of ALCL in seromas before infiltration may avoid need for cytotoxic or immunotherapy and is possibly life-saving.


Assuntos
Implantes de Mama , Neoplasias da Mama , COVID-19 , Linfoma Anaplásico de Células Grandes , Feminino , Humanos , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma Anaplásico de Células Grandes/etiologia , Linfoma Anaplásico de Células Grandes/patologia , Implantes de Mama/efeitos adversos , Interleucina-10 , Seroma/diagnóstico , Seroma/etiologia , Seroma/patologia , Citocinas , COVID-19/complicações , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/complicações , Teste para COVID-19
3.
Nat Commun ; 14(1): 1516, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934113

RESUMO

Resistance to immune checkpoint inhibitor therapies in melanoma is common and remains an intractable clinical challenge. In this study, we comprehensively profile immune checkpoint inhibitor resistance mechanisms in short-term tumor cell lines and matched tumor samples from melanoma patients progressing on immune checkpoint inhibitors. Combining genome, transcriptome, and high dimensional flow cytometric profiling with functional analysis, we identify three distinct programs of immunotherapy resistance. Here we show that resistance programs include (1) the loss of wild-type antigen expression, resulting from tumor-intrinsic IFNγ signaling and melanoma de-differentiation, (2) the disruption of antigen presentation via multiple independent mechanisms affecting MHC expression, and (3) immune cell exclusion associated with PTEN loss. The dominant role of compromised antigen production and presentation in melanoma resistance to immune checkpoint inhibition highlights the importance of treatment salvage strategies aimed at the restoration of MHC expression, stimulation of innate immunity, and re-expression of wild-type differentiation antigens.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Transcriptoma , Imunoterapia/métodos , Imunidade Inata
4.
J Invest Dermatol ; 143(7): 1246-1256.e8, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36736995

RESUMO

Immunotherapy targeting PD-1 and/or CTLA4 leads to durable responses in a proportion of patients with melanoma. However, many patients will not respond to these immune checkpoint inhibitors, and up to 60% of responding patients will develop treatment resistance. We describe a vulnerability in melanoma driven by immune cell activity that provides a pathway towards additional treatment options. This study evaluated short-term melanoma cell lines (referred to as PD1 PROG cells) derived from melanoma metastases that progressed on PD-1 inhibitor-based therapy. We show that the cytokine IFN-γ primes melanoma cells for apoptosis by promoting changes in the accumulation and interactions of apoptotic regulators MCL-1, NOXA, and BAK. The addition of pro-apoptotic BH3 mimetic drugs sensitized PD1 PROG melanoma cells to apoptosis in response to IFN-γ or autologous immune cell activation. These findings provide translatable strategies for combination therapies in melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Linhagem Celular Tumoral , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Melanoma/patologia , Interferon gama
5.
Clin Cancer Res ; 29(13): 2513-2524, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36790412

RESUMO

PURPOSE: This study characterizes intratumoral macrophage populations within baseline melanoma biopsies from patients with advanced melanoma who received either anti-PD-1 monotherapy or a combination with anti-CTLA-4. Particularly, FcγRIIIa (CD16)-expressing macrophage densities were investigated for associations with response and progression-free survival. EXPERIMENTAL DESIGN: Patients with advanced melanoma who received either anti-PD-1 monotherapy or combination anti-PD-1 and anti-CTLA-4 were retrospectively identified. Macrophage populations were analyzed within baseline melanoma biopsies via multiplex IHC in relation to treatment outcomes. RESULTS: Patients who responded to combination immune checkpoint inhibitor contained higher CD16+ macrophage densities than those who did not respond (196 vs. 7 cells/mm2; P = 0.0041). There was no diffidence in CD16+ macrophage densities in the PD-1 monotherapy-treated patients based on response (118 vs. 89 cells/mm2; P = 0.29). A significantly longer 3-year progression-free survival was observed in combination-treated patients with high intratumoral densities of CD16+ macrophages compared with those with low densities (87% vs. 42%, P = 0.0056, n = 40). No association was observed in anti-PD-1 monotherapy-treated patients (50% vs. 47%, P = 0.4636, n = 50). Melanoma biopsies with high densities of CD16+ macrophages contained upregulated gene expression of critical T-cell recruiting chemokines (CXCL9, CXCL10, and CXCL11). CONCLUSIONS: Our data demonstrate that tumor microenvironments enriched with CD16+ macrophages are favorable for response to combination anti-PD-1 and anti-CTLA-4 therapy but not anti-PD-1 monotherapy. These data provides a potential biomarker of response for combination immunotherapies in patients with metastatic melanoma. See related commentary by Smithy and Luke, p. 2345.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Estudos Retrospectivos , Receptor de Morte Celular Programada 1/imunologia , Melanoma/patologia , Antígeno CTLA-4/imunologia , Resultado do Tratamento , Macrófagos/metabolismo , Microambiente Tumoral
6.
Cancers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36230753

RESUMO

Immunotherapy has transformed the management of patients with advanced melanoma, with five-year overall survival rates reaching 52% for combination immunotherapies blocking the cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) and programmed cell death-1 (PD1) immune axes. Yet, our understanding of local and systemic determinants of immunotherapy response and resistance is restrained by the paucity of preclinical models, particularly those for anti-PD1 monotherapy. We have therefore generated a novel murine model of melanoma by integrating key immunotherapy response biomarkers into the model development workflow. The resulting YUMM3.3UVRc34 (BrafV600E; Cdkn2a-/-) model demonstrated high mutation burden and response to interferon (IFN)γ, including induced expression of antigen-presenting molecule MHC-I and the principal PD1 ligand PD-L1, consistent with phenotypes of human melanoma biopsies from patients subsequently responding to anti-PD1 monotherapy. Syngeneic immunosufficient mice bearing YUMM3.3UVRc34 tumors demonstrated durable responses to anti-PD1, anti-CTLA4, or combined treatment. Immunotherapy responses were associated with early on-treatment changes in the tumor microenvironment and circulating T-cell subsets, and systemic immunological memory underlying protection from tumor recurrence. Local and systemic immunological landscapes associated with immunotherapy response in the YUMM3.3UVRc34 melanoma model recapitulate immunotherapy responses observed in melanoma patients and identify discrete immunological mechanisms underlying the durability of responses to anti-PD1 and anti-CTLA4 treatments.

7.
Exploration (Beijing) ; 2(3): 20210176, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323700

RESUMO

Colorectal cancer (CRC) is the third most diagnosed and the second lethal cancer worldwide. Approximately 30-50% of CRC are driven by mutations in the KRAS oncogene, which is a strong negative predictor for response to anti-epidermal growth factor receptor (anti-EGFR) therapy. Examining the phenotype of KRAS mutant and wild-type (WT) CRC cells in response to anti-EGFR treatment may provide significant insights into drug response and resistance. Herein, surface-enhanced Raman spectroscopy (SERS) assay was applied to phenotype four cell surface proteins (EpCAM, EGFR, HER2, HER3) in KRAS mutant (SW480) and WT (SW48) cells over a 24-day time course of anti-EGFR treatment with cetuximab. Cell phenotypes were obtained using Raman reporter-coated and antibody-conjugated gold nanoparticles (SERS nanotags), where a characteristic Raman spectrum was generated upon single laser excitation, reflecting the presence of the targeted surface marker proteins. Compared to the KRAS mutant cells, KRAS WT cells were more sensitive to anti-EGFR treatment and displayed a significant decrease in HER2 and HER3 expression. The SERS results were validated with flow cytometry, confirming the SERS assay is promising as an alternative method for multiplexed characterization of cell surface biomarkers using a single laser excitation system.

8.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201655

RESUMO

It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/terapia , Evasão Tumoral/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Mutação , Neoplasias/imunologia
9.
Biomedicines ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073253

RESUMO

Immune checkpoint inhibitors that target the programmed cell death protein 1 (PD1) pathway have revolutionized the treatment of patients with advanced metastatic melanoma. PD1 inhibitors reinvigorate exhausted tumor-reactive T cells, thus restoring anti-tumor immunity. Tumor necrosis factor alpha (TNFα) is abundantly expressed as a consequence of T cell activation and can have pleiotropic effects on melanoma response and resistance to PD1 inhibitors. In this study, we examined the influence of TNFα on markers of melanoma dedifferentiation, antigen presentation and immune inhibition in a panel of 40 melanoma cell lines. We report that TNFα signaling is retained in all melanomas but the downstream impact of TNFα was dependent on the differentiation status of melanoma cells. We show that TNFα is a poor inducer of antigen presentation molecules HLA-ABC and HLA-DR but readily induces the PD-L2 immune checkpoint in melanoma cells. Our results suggest that TNFα promotes dynamic changes in melanoma cells that may favor immunotherapy resistance.

10.
Cancers (Basel) ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202676

RESUMO

Immunotherapy targeting T-cell inhibitory receptors, namely programmed cell death-1 (PD-1) and/or cytotoxic T-lymphocyte associated protein-4 (CTLA-4), leads to durable responses in a proportion of patients with advanced metastatic melanoma. Combination immunotherapy results in higher rates of response compared to anti-PD-1 monotherapy, at the expense of higher toxicity. Currently, there are no robust molecular biomarkers for the selection of first-line immunotherapy. We used flow cytometry to profile pretreatment tumor biopsies from 36 melanoma patients treated with anti-PD-1 or combination (anti-PD-1 plus anti-CTLA-4) immunotherapy. A novel quantitative score was developed to determine the tumor cell expression of antigen-presenting MHC class I (MHC-I) molecules, and to correlate expression data with treatment response. Melanoma MHC-I expression was intact in all tumors derived from patients who demonstrated durable response to anti-PD-1 monotherapy. In contrast, melanoma MHC-I expression was low in 67% of tumors derived from patients with durable response to combination immunotherapy. Compared to MHC-I high tumors, MHC-I low tumors displayed reduced T-cell infiltration and a myeloid cell-enriched microenvironment. Our data emphasize the importance of robust MHC-I expression for anti-PD-1 monotherapy response and provide a rationale for the selection of combination immunotherapy as the first-line treatment in MHC-I low melanoma.

11.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992658

RESUMO

Immunotherapies blocking immune inhibitory receptors programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) on T-cells have dramatically improved patient outcomes in a range of advanced cancers. However, the lack of response, and the development of resistance remain major obstacles to long-term improvements in patient outcomes. There is significant interest in the clinical use of biomarkers to improve patient selection, and the expression of PD-1 ligand 1 (PD-L1) is often reported as a potential biomarker of response. However, accumulating evidence suggests that the predictive value of PD-L1 expression in tumor biopsies is relatively low due, in part, to its complex biology. In this review, we discuss the biological consequences of PD-L1 expression by various cell types within the tumor microenvironment, and the complex mechanisms that regulate PD-L1 expression at the genomic, transcriptomic and proteomic levels.


Assuntos
Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Microambiente Tumoral/genética , Animais , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia
12.
Nat Commun ; 11(1): 1897, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312968

RESUMO

Transcriptomic signatures designed to predict melanoma patient responses to PD-1 blockade have been reported but rarely validated. We now show that intra-patient heterogeneity of tumor responses to PD-1 inhibition limit the predictive performance of these signatures. We reasoned that resistance mechanisms will reflect the tumor microenvironment, and thus we examined PD-1 inhibitor resistance relative to T-cell activity in 94 melanoma tumors collected at baseline and at time of PD-1 inhibitor progression. Tumors were analyzed using RNA sequencing and flow cytometry, and validated functionally. These analyses confirm that major histocompatibility complex (MHC) class I downregulation is a hallmark of resistance to PD-1 inhibitors and is associated with the MITFlow/AXLhigh de-differentiated phenotype and cancer-associated fibroblast signatures. We demonstrate that TGFß drives the treatment resistant phenotype (MITFlow/AXLhigh) and contributes to MHC class I downregulation in melanoma. Combinations of anti-PD-1 with drugs that target the TGFß signaling pathway and/or which reverse melanoma de-differentiation may be effective future therapeutic strategies.


Assuntos
Diferenciação Celular , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/metabolismo , Melanoma/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoterapia , Masculino , Melanoma/genética , Melanoma/patologia , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
13.
iScience ; 4: 312-325, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30240750

RESUMO

Constitutive expression of the immune checkpoint, PD-L1, inhibits anti-tumor immune responses in cancer, although the factors involved in PD-L1 regulation are poorly understood. Here we show that loss of global DNA methylation, particularly in intergenic regions and repeat elements, is associated with constitutive (PD-L1CON), versus inducible (PD-L1IND), PD-L1 expression in melanoma cell lines. We further show this is accompanied by transcriptomic up-regulation. De novo epigenetic regulators (e.g., DNMT3A) are strongly correlated with PD-L1 expression and methylome status. Accordingly, decitabine-mediated inhibition of global methylation in melanoma cells leads to increased PD-L1 expression. Moreover, viral mimicry and immune response genes are highly expressed in lymphocyte-negative plus PD-L1-positive melanomas, versus PD-L1-negative melanomas in The Cancer Genome Atlas (TCGA). In summary, using integrated genomic analysis we identified that global DNA methylation influences PD-L1 expression in melanoma, and hence melanoma's ability to evade anti-tumor immune responses. These results have implications for combining epigenetic therapy with immunotherapy.

14.
Front Immunol ; 9: 1414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977240

RESUMO

Immune checkpoint inhibitors that block the programmed cell death protein 1/PD-L1 pathway have significantly improved the survival of patients with advanced melanoma. Immunotherapies are only effective in 15-40% of melanoma patients and resistance is associated with defects in antigen presentation and interferon signaling pathways. In this study, we examined interferon-γ (IFNγ) responses in a large panel of immune checkpoint inhibitor-naïve melanoma cells with defined genetic drivers; BRAF-mutant (n = 11), NRAS-mutant (n = 10), BRAF/NRAS wild type (n = 10), and GNAQ/GNA11-mutant uveal melanomas (UVMs) (n = 8). Cell surface expression of established IFNγ downstream targets PD-L1, PD-L2, HLA-A, -B, and -C, HLA-DR, and nerve growth factor receptor (NGFR) were analyzed by flow cytometry. Basal cellular expression levels of HLA-A, -B, -C, HLA-DR, NGFR, and PD-L2 predicted the levels of IFNγ-stimulation, whereas PD-L1 induction was independent of basal expression levels. Only 13/39 (33%) of the melanoma cell lines tested responded to IFNγ with potent induction of all targets, indicating that downregulation of IFNγ signaling is common in melanoma. In addition, we identified two well-recognized mechanisms of immunotherapy resistance, the loss of ß-2-microglobulin and interferon gamma receptor 1 expression. We also examined the influence of melanoma driver oncogenes on IFNγ signaling and our data suggest that UVM have diminished capacity to respond to IFNγ, with lower induced expression of several targets, consistent with the disappointing response of UVM to immunotherapies. Our results demonstrate that melanoma responses to IFNγ are heterogeneous, frequently downregulated in immune checkpoint inhibitor-naïve melanoma and potentially predictive of response to immunotherapy.

15.
Cancer Immunol Immunother ; 67(4): 563-573, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29289977

RESUMO

Effective treatment or prevention of immune side effects associated with checkpoint inhibitor therapy of cancer is an important goal in this new era of immunotherapy. Hepatitis due to immunotherapy with antibodies against PD-1 is uncommon and generally of low severity. We present an unusually severe case arising in a melanoma patient after more than 6 months uncomplicated treatment with anti-PD-1 in an adjuvant setting. The hepatitis rapidly developed resistance to high-dose steroids, requiring anti-thymocyte globulin (ATG) to achieve control. Mass cytometry allowed comprehensive phenotyping of circulating lymphocytes and revealed that CD4+ T cells were profoundly depleted by ATG, while CD8+ T cells, B cells, NK cells and monocytes were relatively spared. Multiple abnormalities in CD4+ T cell phenotype were stably present in the patient before disease onset. These included a population of CCR4-CCR6- effector/memory CD4+ T cells expressing intermediate levels of the Th1-related chemokine receptor CXCR3 and abnormally high multi-drug resistance type 1 transporter (MDR1) activity as assessed by a rhodamine 123 excretion assay. Expression of MDR1 has been implicated in steroid resistance and may have contributed to the severity and lack of a sustained steroid response in this patient. The number of CD4+ rhodamine 123-excreting cells was reduced > 3.5-fold after steroid and ATG treatment. This case illustrates the need to consider this form of steroid resistance in patients failing treatment with corticosteroids. It also highlights the need for both better identification of patients at risk and the development of treatments that involve more specific immune suppression.


Assuntos
Corticosteroides/farmacologia , Anticorpos Monoclonais/efeitos adversos , Resistencia a Medicamentos Antineoplásicos , Hepatite/etiologia , Imunoterapia/efeitos adversos , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Idoso , Estudos de Casos e Controles , Feminino , Hepatite/patologia , Humanos , Masculino , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
16.
Curr Opin Pharmacol ; 35: 48-56, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28609681

RESUMO

The success of immune checkpoint inhibitors in cancer immunotherapy has been widely heralded. However many cancer patients do not respond to immune checkpoint therapy and some relapse due to acquired tumor resistance. Epigenetic targeting may be beneficial in cancer immunotherapy by reversing immune avoidance and escape mechanisms employed by cancer cells, as well as by modulating immune cell differentiation and function. In this manuscript we review recent findings suggesting how epigenetics may be used to improve cancer immunotherapy. We focus on the inhibitors of the CTLA4 and PD1 immune checkpoints and epigenetic modifiers of histone acetylation and methylation and DNA methylation.


Assuntos
Epigênese Genética , Imunoterapia , Neoplasias/terapia , Animais , Metilação de DNA , Inibidores de Histona Desacetilases/uso terapêutico , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Neoplasias/genética , Neoplasias/imunologia
17.
Cancer Immunol Immunother ; 65(8): 885-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222052

RESUMO

The primary immune role of B cells is to produce antibodies, but they can also influence T cell function via antigen presentation and, in some contexts, immune regulation. Whether their roles in tumour immunity are similar to those in other chronic immune responses such as autoimmunity and chronic infection, where both pro- and anti-inflammatory roles have been described, remains controversial. Many studies have aimed to define the role of B cells in antitumor immune responses, but despite this considerable body of work, it is not yet possible to predict how they will affect immunity to any given tumour. In many human cancers, the presence of tumour-infiltrating B cells and tumour-reactive antibodies correlates with extended patient survival, and this clinical observation is supported by data from some animal models. On the other hand, T cell responses can be adversely affected by B cell production of immunoregulatory cytokines, a phenomenon that has been demonstrated in humans and in animal models. The isotype and concentration of tumour-reactive antibodies may also influence tumour progression. Recruitment of B cells into tumours may directly reflect the subtype and strength of the anti-tumour T cell response. As the response becomes chronic, B cells may attenuate T cell responses in an attempt to decrease host damage, similar to their described role in chronic infection and autoimmunity. Understanding how B cell responses in cancer are related to the effectiveness of the overall anti-tumour response is likely to aid in the development of new therapeutic interventions against cancer.


Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Neoplasias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
18.
Oncotarget ; 7(21): 30211-29, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27121060

RESUMO

The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Melanoma Experimental/imunologia , Animais , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Estimativa de Kaplan-Meier , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Carga Tumoral/genética , Carga Tumoral/imunologia
19.
Immunol Cell Biol ; 94(6): 593-603, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26837456

RESUMO

The importance of CD4 T cells in tumour immunity has been increasingly recognised, with recent reports describing robust CD4 T cell-dependent tumour control in mice whose immune-regulatory mechanisms have been disturbed by irradiation, chemotherapy, immunomodulatory therapy and/or constitutive immunodeficiency. Tumour control in such models has been attributed in large part to direct Major Histocompatibility Complex (MHC) class II-dependent CD4 T cell killing of tumour cells. To test whether CD4 T cells can eradicate tumours without directly killing tumour cells, we developed an animal model in which tumour-derived antigen could be presented to T-cell receptor (TCR)-transgenic CD4 T cells by host but not tumour MHC class II molecules. In I-E(+) mice bearing I-E(null) tumours, naive I-E-restricted CD4 T cells proliferated locally in tumour-draining lymph nodes after recognising tumour-derived antigen on migratory dendritic cells. In lymphopaenic but not immunosufficient hosts, CD4 T cells differentiated into polarised T helper type 1 (Th1) cells expressing interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα) and interleukin (IL)-2 but little IL-17, and cleared established tumours. Tumour clearance was enhanced by higher TCR affinity for tumour antigen-MHC class II and was critically dependent on IFNγ, as demonstrated by early tumour escape in animals treated with an IFNγ blocking antibody. Thus, CD4 T cells and IFNγ can control tumour growth without direct T-cell killing of tumour cells, and without requiring additional adaptive immune cells such as CD8 T cells and B cells. Our results support a role for effective CD4 T cell-dependent tumour immunity against MHC class II-negative tumours.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Animais , Movimento Celular , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Interferon gama/metabolismo , Linfonodos/patologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neoplasias Cutâneas/patologia
20.
J Clin Invest ; 125(9): 3627-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26301814

RESUMO

Regulatory T cells (Tregs) have been shown to enhance immune reconstitution and prevent graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation; however, it is unclear how Tregs mediate these effects. Here, we developed a model to examine the mechanism of Treg-dependent regulation of immune reconstitution. Lymphopenic mice were selectively reconstituted with Tregs prior to transfer of conventional CD4+ T cells. Full Treg reconstitution prevented the rapid oligoclonal proliferation that gives rise to pathogenic CD4 effector T cells, while preserving the slow homeostatic form of lymphopenia-induced peripheral expansion that repopulates a diverse peripheral T cell pool. Treg-mediated CTLA-4-dependent downregulation of CD80/CD86 on DCs was critical for inhibition of rapid proliferation and was a function of the Treg/DC ratio achieved by reconstitution. In an allogeneic BM transplant model, selective Treg reconstitution before T cell transfer also normalized DC costimulation and provided complete protection against GVHD. In contrast, cotransfer of Tregs was not protective. Our results indicate that achieving optimal recovery from lymphopenia should aim to improve early Treg reconstitution in order to increase the relative number of Tregs to DCs and thereby inhibit spontaneous oligoclonal T cell proliferation.


Assuntos
Transferência Adotiva , Transplante de Medula Óssea , Células Dendríticas , Doença Enxerto-Hospedeiro , Linfopenia , Linfócitos T Reguladores , Aloenxertos , Animais , Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Antígeno CTLA-4/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Linfopenia/imunologia , Linfopenia/patologia , Linfopenia/prevenção & controle , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA