RESUMO
Memory consolidation in a discriminative bead pecking task is modulated by endogenous adenosine triphosphate (ATP) acting at purinergic receptors in the hippocampus. Consolidation, from short- to intermediate- to long-term memory during two distinct periods following training, was blocked by the non-selective P2 purinergic receptor antagonist PPADS (pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) tetrasodium salt hydrate and the specific P2Y1 receptor antagonist MRS2179. Direct injections of the ATP agonists (ATPγS and ADPßS) potentiated memory consolidation and the effect of ADPßS was blocked by MRS2179, suggesting an important role of ATP on memory consolidation via the P2Y1 receptor in the chick hippocampus. Incubation of astrocytes with ATPγS and ADPßS resulted in the increase of intracellular calcium ([Ca2+]i), the latter being blocked by MRS2179 suggesting a specific role for P2Y1 receptors in the calcium response. This response was prevented by blocking astrocytic oxidative metabolism with fluoroacetate. We argue that the source of the ATP acting on neuronal P2Y1 receptors is most likely to be astrocytes. Thrombin selectively increases [Ca2+]i in astrocytes but not in neurones. The main findings of the present study are: (a) astrocytic [Ca2+]i plays an important role in the consolidation of short-term to long-term memory; and (b) ATP released from chick astrocytes during learning modulates neuronal activity through astrocytic P2Y1 receptors.
Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Memória/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/agonistas , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Galinhas , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Tionucleotídeos/farmacologiaRESUMO
D-serine is thought to be a glia-derived transmitter that activates N-methyl D-aspartate receptors (NMDARs) in the brain. Here, we investigate the pathways for D-serine release using primary cultures, brain slices, and in vivo microdialysis. In contrast with the notion that D-serine is exclusively released from astrocytes, we found that D-serine is released by neuronal depolarization both in vitro and in vivo. Veratridine (50 microM) or depolarization by 40 mM KCl elicits a significant release of endogenous D-serine from primary neuronal cultures. Controls with astrocyte cultures indicate that glial cells are insensitive to veratridine, but release D-serine mainly by the opening of volume-regulated anion channels. In cortical slices perfused with veratridine, endogenous D-serine release is 10-fold higher than glutamate receptor-evoked release. Release of D-serine from slices does not require internal or external Ca(2+), suggesting a nonvesicular release mechanism. To confirm the neuronal origin of D-serine, we selectively loaded neurons in cortical slices with D-[(3)H]serine or applied D-alanine, which specifically releases D-serine from neurons. Depolarization with veratridine promotes D-serine release in vivo monitored by high temporal resolution microdialysis of the striatum. Our data indicate that the neuronal pool of D-serine plays a major role in D-serine dynamics, with implications for the regulation of NMDAR transmission.
Assuntos
Encéfalo/citologia , Neurônios/metabolismo , Serina/metabolismo , Potenciais de Ação , Animais , Astrócitos/citologia , Química Encefálica , Células Cultivadas , Neurônios/citologia , Neurotransmissores , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Veratridina/farmacologiaRESUMO
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts of serine racemase and D-serine in primary neuronal cultures and neurons in vivo. Several neuronal culture types expressed serine racemase, and D-serine synthesis was comparable with that in glial cultures. Immunohistochemical staining of brain sections with new antibodies revealed the presence of serine racemase and D-serine in neurons. Cortical neurons expressing serine racemase also expressed the NR2a subunit in situ. Neuron-derived D-serine contributes to NMDA receptor activation in cortical neuronal cultures. Degradation of endogenous D-serine by addition of the recombinant enzyme D-serine deaminase diminished NMDA-elicited excitotoxicity. Release of neuronal D-serine was mediated by ionotropic glutamate receptor agonists such as NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate. Removal of either external Ca2+ or Na+ blocked D-serine release. Release of D-serine was mostly through a cytosolic route because it was insensitive to bafilomycin A1, a potent inhibitor of vesicular neurotransmitter uptake. D-serine was also not transported into purified synaptic vesicles under conditions optimal for the uptake of known transmitters. Our results suggest that neurons are a major source of D-serine. Glutamate-induced neuronal D-serine release provides a novel mechanism for activating NMDA receptors by an autocrine or paracrine way.
Assuntos
Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Citosol/metabolismo , Ácido Caínico/farmacologia , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Serina/metabolismo , Sinapses/metabolismoRESUMO
D-serine occurs at high levels in the brain, where it is an endogenous coagonist at the "glycine site" of NMDA receptors. However, D-serine action has not been previously compared with that of endogenous glycine, and the relative importance of the two coagonists remains unclear. We now investigated the efficiencies of the two coagonists in mediating NMDA receptor neurotoxicity in organotypic hippocampal slices. Removal of endogenous D-serine from slices was achieved by pretreating the tissue with recombinant D-serine deaminase enzyme. This enzyme is several orders of magnitude more efficient than previous methods to remove D-serine. We report that complete removal of D-serine virtually abolished NMDA-elicited neurotoxicity but did not protect against kainate. Although levels of glycine were 10-fold higher than D-serine, endogenous glycine was ineffective in mediating NMDA receptor neurotoxicity. The effect of endogenous glycine could be observed only after simultaneous removal of endogenous D-serine and blockage of the glycine transporter GlyT1. Our data indicate that D-serine is the dominant coagonist for NMDA receptor-elicited neurotoxicity, mediating all cell death elicited by NMDA in organotypic slices. The results suggest an essential role for this unusual D-amino acid, with implications for the mechanism of neuronal death in the nervous system.
Assuntos
Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/fisiologia , Serina/toxicidade , Animais , N-Metilaspartato/toxicidade , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Serina/fisiologiaRESUMO
Mammalian brain contains high levels of d-serine, an endogenous co-agonist of N-methyl D-aspartate type of glutamate receptors. D-Serine is synthesized by serine racemase, a brain enriched enzyme converting L- to D-serine. Degradation of D-serine is achieved by D-amino acid oxidase, but this enzyme is not present in forebrain areas that are highly enriched in D-serine. We now report that serine racemase catalyzes the degradation of cellular D-serine itself, through the alpha,beta-elimination of water. The enzyme also catalyzes water alpha,beta-elimination with L-serine and L-threonine. alpha,beta-Elimination with these substrates is observed both in vitro and in vivo. To investigate further the role of alpha,beta-elimination in regulating cellular D-serine, we generated a serine racemase mutant displaying selective impairment of alpha,beta-elimination activity (Q155D). Levels of D-serine synthesized by the Q155D mutant are several-fold higher than the wild-type both in vitro and in vivo. This suggests that the alpha,beta-elimination reaction limits the achievable D-serine concentration in vivo. Additional mutants in vicinal residues (H152S, P153S, and N154F) similarly altered the partition between the alpha,beta-elimination and racemization reactions. alpha,beta-Elimination also competes with the reverse serine racemase reaction in vivo. Although the formation of L- from D-serine is readily detected in Q155D mutant-expressing cells incubated with physiological D-serine concentrations, reversal with wild-type serine racemase-expressing cells required much higher D-serine concentration. We propose that alpha,beta-elimination provides a novel mechanism for regulating intracellular D-serine levels, especially in brain areas that do not possess D-amino acid oxidase activity. Extracellular D-serine is more stable toward alpha,beta-elimination, likely due to physical separation from serine racemase and its elimination activity.
Assuntos
Racemases e Epimerases/metabolismo , Serina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Catálise , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Racemases e Epimerases/química , Racemases e Epimerases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Água/metabolismoRESUMO
BACKGROUND: Shear stress forces acting on liver sinusoidal endothelial cells following resection have been noted as a possible trigger in the early stages of hepatic regeneration. Thus, the morphology and gene expression of endothelial cells following partial hepatectomy or shear stress in vitro was studied. RESULTS: Following partial hepatectomy blood flow-to-liver mass ratio reached maximal values 24 hrs post resection. Concomitantly, large fenestrae (gaps) were noted. Exposure of liver sinusoidal endothelial cells, in vitro, to physiological laminar shear stress forces was associated with translocation of vascular endothelial cell growth factor receptor-2 (VEGFR-2) and neuropilin-1 from perinuclear and faint cytoplasmic distribution to plasma membrane and cytoskeletal localization. Under these conditions, VEGFR-2 co-stains with VE-cadherin. Unlike VEGFR-2, the nuclear localization of VEGFR-1 was not affected by shear stress. Quantification of the above receptors showed a significant increase in VEGFR-1, VEGFR-2 and neuropilin-1 mRNA following shear stress. CONCLUSION: Our data suggest a possible relation between elevated blood flow associated with partial hepatectomy and the early events occurring thereby.