Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Struct Funct ; 48(2): 135-144, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37394513

RESUMO

We cloned and characterized two new coral fluorescent proteins: h2-3 and 1-41. h2-3 formed an obligate dimeric complex and exhibited bright green fluorescence. On the other hand, 1-41 formed a highly multimeric complex and exhibited dim red fluorescence. We engineered 1-41 into AzaleaB5, a practically useful red-emitting fluorescent protein for cellular labeling applications. We fused h2-3 and AzaleaB5 to the ubiquitination domains of human Geminin and Cdt1, respectively, to generate a new color variant of Fucci (Fluorescent Ubiquitination-based Cell-Cycle Indicator): Fucci5. We found Fucci5 provided more reliable nuclear labeling for monitoring cell-cycle progression than the 1st and 2nd generations that used mAG/mKO2 and mVenus/mCherry, respectively.Key words: fluorescent protein, cell cycle, time-lapse imaging, flow cytometry.


Assuntos
Proteínas de Ciclo Celular , Corantes , Humanos , Cor , Divisão Celular , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Microscopia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
2.
Cell Struct Funct ; 43(1): 41-51, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29398689

RESUMO

The Golgi apparatus is a key station of glycosylation and membrane traffic. It consists of stacked cisternae in most eukaryotes. However, the mechanisms how the Golgi stacks are formed and maintained are still obscure. The model plant Arabidopsis thaliana provides a nice system to observe Golgi structures by light microscopy, because the Golgi in A. thaliana is in the form of mini-stacks that are distributed throughout the cytoplasm. To obtain a clue to understand the molecular basis of Golgi morphology, we took a forward-genetic approach to isolate A. thaliana mutants that show abnormal structures of the Golgi under a confocal microscope. In the present report, we describe characterization of one of such mutants, named #46-3. The #46-3 mutant showed pleiotropic Golgi phenotypes. The Golgi size was in majority smaller than the wild type, but varied from very small ones, sometimes without clear association of cis and trans cisternae, to abnormally large ones under a confocal microscope. At the ultrastructual level by electron microscopy, queer-shaped large Golgi stacks were occasionally observed. By positional mapping, genome sequencing, and complementation and allelism tests, we linked the mutant phenotype to the missense mutation D374N in the NSF gene, encoding the N-ethylmaleimide-sensitive factor (NSF), a key component of membrane fusion. This residue is near the ATP-binding site of NSF, which is very well conserved in eukaryotes, suggesting that the biochemical function of NSF is important for maintaining the normal morphology of the Golgi.Key words: Golgi morphology, N-ethylmaleimide-sensitive factor (NSF), Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Complexo de Golgi/patologia , Complexo de Golgi/ultraestrutura , Humanos , Fusão de Membrana , Microscopia Confocal , Microscopia Eletrônica , Mutação de Sentido Incorreto , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Fenótipo , Alinhamento de Sequência
3.
Mol Cell ; 58(1): 186-93, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25773597

RESUMO

Crystallization of proteins may occur in the cytosol of a living cell, but how a cell responds to intracellular protein crystallization remains unknown. We developed a variant of coral fluorescent protein that forms diffraction-quality crystals within mammalian cells. This expression system allowed the direct determination of its crystal structure at 2.9 Å, as well as observation of the crystallization process and cellular responses. The micron-sized crystal, which emerged rapidly, was a pure assembly of properly folded ß-barrels and was recognized as an autophagic cargo that was transferred to lysosomes via a process involving p62 and LC3. Several lines of evidence indicated that autophagy was not required for crystal nucleation or growth. These findings demonstrate that in vivo protein crystals can provide an experimental model to study chemical catalysis. This knowledge may be beneficial for structural biology studies on normal and disease-related protein aggregation.


Assuntos
Antozoários/química , Citosol/metabolismo , Proteínas de Fluorescência Verde/química , Lisossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia , Cristalização , Cristalografia por Raios X , Citosol/ultraestrutura , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Lisossomos/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Neurônios/metabolismo , Neurônios/ultraestrutura , Cultura Primária de Células , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Sequestossoma-1 , Difração de Raios X
4.
Front Mol Neurosci ; 7: 93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505870

RESUMO

Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its ß-barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3°) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.

5.
Mol Biol Cell ; 23(16): 3203-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22740633

RESUMO

The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.


Assuntos
Brefeldina A/farmacologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Nicotiana/citologia , Inibidores da Síntese de Proteínas/farmacologia , Citoesqueleto de Actina/metabolismo , Proteínas de Bactérias/metabolismo , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo
6.
Proc Natl Acad Sci U S A ; 106(31): 13106-11, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19620714

RESUMO

Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement.


Assuntos
Actinas/fisiologia , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Proteínas de Arabidopsis/fisiologia , Membrana Celular/química , Proteínas de Cloroplastos , Criptocromos , Flavoproteínas/fisiologia , Fluorescência , Proteínas de Fluorescência Verde , Luz , Proteínas dos Microfilamentos/fisiologia , Microtúbulos/fisiologia , Movimento
7.
Plant Cell ; 20(11): 3006-21, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18984676

RESUMO

The SNARE complex is a key regulator of vesicular traffic, executing membrane fusion between transport vesicles or organelles and target membranes. A functional SNARE complex consists of four coiled-coil helical bundles, three of which are supplied by Q-SNAREs and another from an R-SNARE. Arabidopsis thaliana VAMP727 is an R-SNARE, with homologs only in seed plants. We have found that VAMP727 colocalizes with SYP22/ VAM3, a Q-SNARE, on a subpopulation of prevacuolar compartments/endosomes closely associated with the vacuolar membrane. Genetic and biochemical analyses, including examination of a synergistic interaction of vamp727 and syp22 mutations, histological examination of protein localization, and coimmunoprecipitation from Arabidopsis lysates indicate that VAMP727 forms a complex with SYP22, VTI11, and SYP51 and that this complex plays a crucial role in vacuolar transport, seed maturation, and vacuole biogenesis. We suggest that the VAMP727 complex mediates the membrane fusion between the prevacuolar compartment and the vacuole and that this process has evolved as an essential step for seed development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Sementes/crescimento & desenvolvimento , Vacúolos/metabolismo , Oxirredutases do Álcool , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fusão de Membrana , Microscopia Eletrônica , Transporte Proteico , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , RNA de Plantas/genética , Sementes/genética , Sementes/ultraestrutura
8.
EMBO J ; 21(6): 1267-79, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11889033

RESUMO

We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map-based strategy and identified it as the first member of the CtBP family to be found in plants. Wild-type AN cDNA reversed the narrow-leaved phenotype and the abnormal arrangement of cortical MTs of the an-1 mutation. In the animal kingdom, CtBPs self-associate and act as co-repressors of transcription. The AN protein can also self-associate in the yeast two-hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Genes de Plantas/fisiologia , Proteínas Repressoras/fisiologia , Oxirredutases do Álcool , Sequência de Aminoácidos , Animais , Arabidopsis , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tamanho Celular , Parede Celular , Clonagem Molecular , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Glicosiltransferases , Meristema , Camundongos , Microtúbulos , Dados de Sequência Molecular , Mutagênese , Fosfoproteínas/classificação , Folhas de Planta/citologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Repressoras/classificação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA