Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Front Aging ; 5: 1460360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39411517

RESUMO

While earlier first-generation epigenetic aging clocks were trained to estimate chronological age as accurately as possible, more recent next-generation clocks incorporate DNA methylation information more pertinent to health, lifestyle, and/or outcomes. Recently, we produced a non-invasive next-generation epigenetic clock trained using Infinium MethylationEPIC data from more than 8,000 diverse adult buccal samples. While this clock correlated with various health, lifestyle, and disease factors, we did not assess its ability to capture mortality. To address this gap, we applied CheekAge to the longitudinal Lothian Birth Cohorts of 1921 and 1936. Despite missing nearly half of its CpG inputs, CheekAge was significantly associated with mortality in this longitudinal blood dataset. Specifically, a change in one standard deviation corresponded to a hazard ratio (HR) of 1.21 (FDR q = 1.66e-6). CheekAge performed better than all first-generation clocks tested and displayed a comparable HR to the next-generation, blood-trained DNAm PhenoAge clock (HR = 1.23, q = 2.45e-9). To better understand the relative importance of each CheekAge input in blood, we iteratively removed each clock CpG and re-calculated the overall mortality association. The most significant effect came from omitting the CpG cg14386193, which is annotated to the gene ALPK2. Excluding this DNA methylation site increased the FDR value by nearly threefold (to 4.92e-06). We additionally performed enrichment analyses of the top annotated CpGs that impact mortality to better understand their associated biology. Taken together, we provide important validation for CheekAge and highlight novel CpGs that underlie a newly identified mortality association.

2.
Aging Cell ; : e14377, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392224

RESUMO

Usage of the phrase "biological age" has picked up considerably since the advent of aging clocks and it has become commonplace to describe an aging clock's output as biological age. In contrast to this labeling, biological age is also often depicted as a more abstract concept that helps explain how individuals are aging internally, externally, and functionally. Given that the bulk of molecular aging is tissue-specific and aging itself is a remarkably complex, multifarious process, it is unsurprising that most surveyed scientists agree that aging cannot be quantified via a single metric. We share this sentiment and argue that, just like it would not be reasonable to assume that an individual with an ideal grip strength, VO2 max, or any other aging biomarker is biologically young, we should be careful not to conflate an aging clock with whole-body biological aging. To address this, we recommend that researchers describe the output of an aging clock based on the type of input data used or the name of the clock itself. Epigenetic aging clocks produce epigenetic age, transcriptomic aging clocks produce transcriptomic age, and so forth. If a clock has a unique name, such as our recently developed epigenetic aging clock CheekAge, the name of the clock can double as the output. As a compromise solution, aging biomarkers can be described as indicators of biological age. We feel that these recommendations will help scientists and the public differentiate between aging biomarkers and the much more elusive concept of biological age.

3.
Nat Commun ; 15(1): 6191, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048567

RESUMO

Defect in the SMN1 gene causes spinal muscular atrophy (SMA), which shows loss of motor neurons, muscle weakness and atrophy. While current treatment strategies, including small molecules or viral vectors, have shown promise in improving motor function and survival, achieving a definitive and long-term correction of SMA's endogenous mutations and phenotypes remains highly challenging. We have previously developed a CRISPR-Cas9 based homology-independent targeted integration (HITI) strategy, enabling unidirectional DNA knock-in in both dividing and non-dividing cells in vivo. In this study, we demonstrated its utility by correcting an SMA mutation in mice. When combined with Smn1 cDNA supplementation, it exhibited long-term therapeutic benefits in SMA mice. Our observations may provide new avenues for the long-term and efficient treatment of inherited diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Animais , Edição de Genes/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Camundongos , Terapia Genética/métodos , Modelos Animais de Doenças , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Masculino , Feminino
4.
Geroscience ; 46(3): 3429-3443, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441802

RESUMO

Epigenetic aging clocks are computational models that predict age using DNA methylation information. Initially, first-generation clocks were developed to make predictions using CpGs that change with age. Over time, next-generation clocks were created using CpGs that relate to both age and health. Since existing next-generation clocks were constructed in blood, we sought to develop a next-generation clock optimized for prediction in cheek swabs, which are non-invasive and easy to collect. To do this, we collected MethylationEPIC data as well as lifestyle and health information from 8045 diverse adults. Using a novel simulated annealing approach that allowed us to incorporate lifestyle and health factors into training as well as a combination of CpG filtering, CpG clustering, and clock ensembling, we constructed CheekAge, an epigenetic aging clock that has a strong correlation with age, displays high test-retest reproducibility across replicates, and significantly associates with a plethora of lifestyle and health factors, such as BMI, smoking status, and alcohol intake. We validated CheekAge in an internal dataset and multiple publicly available datasets, including samples from patients with progeria or meningioma. In addition to exploring the underlying biology of the data and clock, we provide a free online tool that allows users to mine our methylomic data and predict epigenetic age.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Reprodutibilidade dos Testes , Ilhas de CpG , Envelhecimento/genética , Estilo de Vida
5.
Nat Biotechnol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418648

RESUMO

Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.

7.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36754048

RESUMO

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Camundongos , Humanos , Animais , Ilhas de CpG , Padrões de Herança , Mamíferos/genética
8.
Nature ; 614(7949): 767-773, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755096

RESUMO

Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.


Assuntos
Replicação do DNA , Mitocôndrias , Transdução de Sinais , Telômero , Humanos , DNA/biossíntese , DNA/genética , DNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Telômero/genética , Telômero/metabolismo , Interferons , Imunidade Inata , Autofagia
9.
Cell Metab ; 35(1): 166-183.e11, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599300

RESUMO

Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma. Analyses of MP-encoding mRNAs under different physiological conditions (high-fat diet) revealed that numerous MPs are regulated in adipose tissue in vivo and are co-expressed with established metabolic genes. Furthermore, Ribo-seq provided evidence for the translation of Gm8773, which encodes a secreted MP that is homologous to human and chicken FAM237B. Gm8773 is highly expressed in the arcuate nucleus of the hypothalamus, and intracerebroventricular administration of recombinant mFAM237B showed orexigenic activity in obese mice. Together, these data highlight the value of this adipocyte MP database in identifying MPs with roles in fundamental metabolic and physiological processes such as feeding.


Assuntos
Adipócitos Brancos , Tecido Adiposo Marrom , Humanos , Animais , Camundongos , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Fases de Leitura Aberta/genética , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo , Micropeptídeos
10.
Sci Adv ; 8(40): eabo3932, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197983

RESUMO

Pancreatic islet beta cells are essential for maintaining glucose homeostasis. To understand the impact of aging on beta cells, we performed meta-analysis of single-cell RNA sequencing datasets, transcription factor (TF) regulon analysis, high-resolution confocal microscopy, and measured insulin secretion from nondiabetic donors spanning most of the human life span. This revealed the range of molecular and functional changes that occur during beta cell aging, including the transcriptional deregulation that associates with cellular immaturity and reorganization of beta cell TF networks, increased gene transcription rates, and reduced glucose-stimulated insulin release. These alterations associate with activation of endoplasmic reticulum (ER) stress and autophagy pathways. We propose that a chronic state of ER stress undermines old beta cell structure function to increase the risk of beta cell failure and type 2 diabetes onset as humans age.

11.
iScience ; 25(11): 105304, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304118

RESUMO

Epigenetic aging clocks are computational models that use DNA methylation sites to predict age. Since cheek swabs are non-invasive and painless, collecting DNA from buccal tissue is highly desirable. Here, we review 11 existing clocks that have been applied to buccal tissue. Two of these were exclusively trained on adults and, while moderately accurate, have not been used to capture health-relevant differences in epigenetic age. Using 130 common CpGs utilized by two or more existing buccal clocks, we generate a proof-of-concept predictor in an adult methylomic dataset. In addition to accurately estimating age (r = 0.95 and mean absolute error = 3.88 years), this clock predicted that Down syndrome subjects were significantly older relative to controls. A literature and database review of CpG-associated genes identified numerous genes (e.g., CLOCK, ELOVL2, and VGF) and molecules (e.g., alpha-linolenic acid, glycine, and spermidine) reported to influence lifespan and/or age-related disease in model organisms.

12.
Sci Adv ; 8(36): eabg3203, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070378

RESUMO

Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.


Assuntos
Proteínas de Drosophila , Neurociências , Agressão/fisiologia , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Masculino , Comportamento Social
14.
NPJ Parkinsons Dis ; 8(1): 103, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948563

RESUMO

Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from the induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, show changes that are central and convergent to PD and suggest a strong involvement of the tetra-partite synapse in PD pathophysiology.

15.
Front Immunol ; 13: 960401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967387

RESUMO

Many apoptotic thymocytes are generated during the course of T cell selection in the thymus, yet the machinery through which these dead cells are recognized and phagocytically cleared is incompletely understood. We found that the TAM receptor tyrosine kinases Axl and Mer, which are co-expressed by a specialized set of phagocytic thymic macrophages, are essential components of this machinery. Mutant mice lacking Axl and Mer exhibited a marked accumulation of apoptotic cells during the time that autoreactive and nonreactive thymocytes normally die. Unexpectedly, these double mutants also displayed a profound deficit in the total number of highly phagocytic macrophages in the thymus, and concomitantly exhibited diminished expression of TIM-4, CD163, and other non-TAM phagocytic engulfment systems in the macrophages that remained. Importantly, these previously unrecognized deficits were not confined to the thymus, as they were also evident in the spleen and bone marrow. They had pleiotropic consequences for the double mutants, also previously unrecognized, which included dysregulation of hemoglobin turnover and iron metabolism leading to anemia.


Assuntos
Macrófagos , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , c-Mer Tirosina Quinase , Animais , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Tirosina/metabolismo , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/imunologia , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
16.
Nat Neurosci ; 25(9): 1163-1178, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042312

RESUMO

Astrocytes negatively impact neuronal development in many models of neurodevelopmental disorders (NDs); however, how they do this, and if mechanisms are shared across disorders, is not known. In this study, we developed a cell culture system to ask how astrocyte protein secretion and gene expression change in three mouse models of genetic NDs (Rett, Fragile X and Down syndromes). ND astrocytes increase release of Igfbp2, a secreted inhibitor of insulin-like growth factor (IGF). IGF rescues neuronal deficits in many NDs, and we found that blocking Igfbp2 partially rescues inhibitory effects of Rett syndrome astrocytes, suggesting that increased astrocyte Igfbp2 contributes to decreased IGF signaling in NDs. We identified that increased BMP signaling is upstream of protein secretion changes, including Igfbp2, and blocking BMP signaling in Fragile X and Rett syndrome astrocytes reverses inhibitory effects on neurite outgrowth. This work provides a resource of astrocyte-secreted proteins in health and ND models and identifies novel targets for intervention in diverse NDs.


Assuntos
Transtornos do Neurodesenvolvimento , Síndrome de Rett , Animais , Astrócitos/metabolismo , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurogênese , Neurônios/metabolismo , Síndrome de Rett/metabolismo
17.
Ageing Res Rev ; 81: 101721, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029998

RESUMO

Alzheimer's disease (AD) is an incredibly complex and presently incurable age-related brain disorder. To better understand this debilitating disease, we collated and performed a meta-analysis on publicly available RNA-Seq, microarray, proteomics, and microRNA samples derived from AD patients and non-AD controls. 4089 samples originating from brain tissues and blood remained after applying quality filters. Since disease progression in AD correlates with age, we stratified this large dataset into three different age groups: < 75 years, 75-84 years, and ≥ 85 years. The RNA-Seq, microarray, and proteomics datasets were then combined into different integrated datasets. Ensemble machine learning was employed to identify genes and proteins that can accurately classify samples as either AD or control. These predictive inputs were then subjected to network-based enrichment analyses. The ability of genes/proteins associated with different pathways in the Molecular Signatures Database to diagnose AD was also tested. We separately identified microRNAs that can be used to make an AD diagnosis and subjected the predicted gene targets of the most predictive microRNAs to an enrichment analysis. The following key themes emerged from our machine learning and bioinformatics analyses: cell death, cellular senescence, energy metabolism, genomic integrity, glia, immune system, metal ion homeostasis, oxidative stress, proteostasis, and synaptic function. Many of the results demonstrated unique age-specificity. For example, terms highlighting cellular senescence only emerged in the earliest and intermediate age ranges while the majority of results relevant to cell death appeared in the youngest patients. Existing literature corroborates the importance of these hallmarks in AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Aprendizado de Máquina , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Aging Cell ; 21(8): e13664, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778957

RESUMO

Although chronological age correlates with various age-related diseases and conditions, it does not adequately reflect an individual's functional capacity, well-being, or mortality risk. In contrast, biological age provides information about overall health and indicates how rapidly or slowly a person is aging. Estimates of biological age are thought to be provided by aging clocks, which are computational models (e.g., elastic net) that use a set of inputs (e.g., DNA methylation sites) to make a prediction. In the past decade, aging clock studies have shown that several age-related diseases, social variables, and mental health conditions associate with an increase in predicted biological age relative to chronological age. This phenomenon of age acceleration is linked to a higher risk of premature mortality. More recent research has demonstrated that predicted biological age is sensitive to specific interventions. Human trials have reported that caloric restriction, a plant-based diet, lifestyle changes involving exercise, a drug regime including metformin, and vitamin D3 supplementation are all capable of slowing down or reversing an aging clock. Non-interventional studies have connected high-quality sleep, physical activity, a healthy diet, and other factors to age deceleration. Specific molecules have been associated with the reduction or reversal of predicted biological age, such as the antihypertensive drug doxazosin or the metabolite alpha-ketoglutarate. Although rigorous clinical trials are needed to validate these initial findings, existing data suggest that aging clocks are malleable in humans. Additional research is warranted to better understand these computational models and the clinical significance of lowering or reversing their outputs.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Restrição Calórica , Metilação de DNA/genética , Humanos , Estilo de Vida
19.
Nat Commun ; 13(1): 3646, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752626

RESUMO

The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.


Assuntos
Proteína da Síndrome de Wiskott-Aldrich , Síndrome de Wiskott-Aldrich , Processamento Alternativo , Núcleo Celular/metabolismo , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
20.
Nat Immunol ; 23(7): 1086-1097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739197

RESUMO

Maintenance of tissue homeostasis is dependent on the communication between stem cells and supporting cells in the same niche. Regulatory T cells (Treg cells) are emerging as a critical component of the stem-cell niche for supporting their differentiation. How Treg cells sense dynamic signals in this microenvironment and communicate with stem cells is mostly unknown. In the present study, by using hair follicles (HFs) to study Treg cell-stem cell crosstalk, we show an unrecognized function of the steroid hormone glucocorticoid in instructing skin-resident Treg cells to facilitate HF stem-cell (HFSC) activation and HF regeneration. Ablation of the glucocorticoid receptor (GR) in Treg cells blocks hair regeneration without affecting immune homeostasis. Mechanistically, GR and Foxp3 cooperate in Treg cells to induce transforming growth factor ß3 (TGF-ß3), which activates Smad2/3 in HFSCs and facilitates HFSC proliferation. The present study identifies crosstalk between Treg cells and HFSCs mediated by the GR-TGF-ß3 axis, highlighting a possible means of manipulating Treg cells to support tissue regeneration.


Assuntos
Glucocorticoides , Folículo Piloso , Glucocorticoides/metabolismo , Cabelo/metabolismo , Folículo Piloso/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA