Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291301

RESUMO

Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatusIMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Aspergillus fumigatus/genética , Proteínas Sanguíneas/genética , Catepsina G/genética , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Masculino , Estudo de Prova de Conceito , Adulto Jovem
2.
Front Immunol ; 10: 2573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824478

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.


Assuntos
Aspergillus fumigatus/enzimologia , Proteína de Ligação ao Complemento C4b/metabolismo , Fator H do Complemento/metabolismo , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Aspergilose/imunologia , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Linhagem Celular , Fator H do Complemento/imunologia , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Cinética , Fosfopiruvato Hidratase/imunologia , Ligação Proteica
3.
Front Immunol ; 9: 1635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30166981

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Proteínas Fúngicas/imunologia , Aspergilose/microbiologia , Proteínas Inativadoras do Complemento C3b/imunologia , Proteínas Inativadoras do Complemento C3b/metabolismo , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Humanos , Evasão da Resposta Imune , Imunidade Inata , Plasminogênio/imunologia , Plasminogênio/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA