Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
NPJ Vaccines ; 7(1): 7, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064109

RESUMO

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.

2.
bioRxiv ; 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545366

RESUMO

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen Modified Vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.

3.
Nat Commun ; 11(1): 6121, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257686

RESUMO

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. We show that mice immunized with these sMVA vectors develop robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.


Assuntos
Vacinas contra COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vetores Genéticos/imunologia , Humanos , Imunidade Celular , Camundongos , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Vacinas Atenuadas/imunologia , Vaccinia virus/imunologia , Vacinas Virais/imunologia
4.
Res Sq ; 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32702732

RESUMO

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.

5.
bioRxiv ; 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32637957

RESUMO

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.

6.
Cancer Res ; 76(10): 3003-13, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013195

RESUMO

The identification of optimal target antigens on tumor cells is central to the advancement of new antibody-based cancer therapies. We performed suppression subtractive hybridization and identified nectin-4 (PVRL4), a type I transmembrane protein and member of a family of related immunoglobulin-like adhesion molecules, as a potential target in epithelial cancers. We conducted immunohistochemical analysis of 2,394 patient specimens from bladder, breast, lung, pancreatic, ovarian, head/neck, and esophageal tumors and found that 69% of all specimens stained positive for nectin-4. Moderate to strong staining was especially observed in 60% of bladder and 53% of breast tumor specimens, whereas the expression of nectin-4 in normal tissue was more limited. We generated a novel antibody-drug conjugate (ADC) enfortumab vedotin comprising the human anti-nectin-4 antibody conjugated to the highly potent microtubule-disrupting agent MMAE. Hybridoma (AGS-22M6E) and CHO (ASG-22CE) versions of enfortumab vedotin (also known as ASG-22ME) ADC were able to bind to cell surface-expressed nectin-4 with high affinity and induced cell death in vitro in a dose-dependent manner. Treatment of mouse xenograft models of human breast, bladder, pancreatic, and lung cancers with enfortumab vedotin significantly inhibited the growth of all four tumor types and resulted in tumor regression of breast and bladder xenografts. Overall, these findings validate nectin-4 as an attractive therapeutic target in multiple solid tumors and support further clinical development, investigation, and application of nectin-4-targeting ADCs. Cancer Res; 76(10); 3003-13. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Moléculas de Adesão Celular/antagonistas & inibidores , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Oligopeptídeos/imunologia , Animais , Antineoplásicos/farmacologia , Apoptose , Western Blotting , Moléculas de Adesão Celular/metabolismo , Proliferação de Células , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Macaca fascicularis , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Nectinas , Neoplasias/enzimologia , Neoplasias/patologia , Ratos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Cancer Res ; 22(8): 1989-99, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26589436

RESUMO

PURPOSE: New cancer-specific antigens are required for the design of novel antibody-drug conjugates (ADC) that deliver tumor-specific and highly potent cytotoxic therapy. EXPERIMENTAL DESIGN: Suppression subtractive hybridization identified ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3 or CD203c) as a potential human cancer-specific antigen. Antibodies targeting the extracellular domain of human ENPP3 were produced and selected for specific binding to ENPP3. Expression of ENPP3 in normal and cancer tissue specimens was evaluated by immunohistochemistry (IHC). ADCs comprising anti-ENPP3 Ab conjugated with maleimidocaproyl monomethyl auristatin F via a noncleavable linker (mcMMAF) were selected for therapeutic potential using binding and internalization assays, cytotoxicity assays, and tumor growth inhibition in mouse xenograft models. Pharmacodynamic markers were evaluated by IHC in tissues and ELISA in blood. RESULTS: ENPP3 was highly expressed in clear cell renal cell carcinoma: 92.3% of samples were positive and 83.9% showed high expression. By contrast, expression was negligible in normal tissues examined, with the exception of the kidney. High expression was less frequent in papillary renal cell carcinoma and hepatocellular carcinoma samples. AGS16F, an anti-ENPP3 antibody-mcMMAF conjugate, inhibited tumor growth in three different renal cell carcinoma (RCC) xenograft models. AGS16F localized to tumors, formed the active metabolite Cys-mcMMAF, induced cell-cycle arrest and apoptosis, and increased blood levels of caspase-cleaved cytokeratin-18, a marker of epithelial cell death. CONCLUSIONS: AGS16F is a promising new therapeutic option for patients with RCC and is currently being evaluated in a phase I clinical trial.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Imunoconjugados/farmacologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Pirofosfatases/antagonistas & inibidores , Animais , Basófilos/efeitos dos fármacos , Basófilos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Renais/tratamento farmacológico , Macaca fascicularis , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Neoplasia ; 15(10): 1138-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204193

RESUMO

Preclinical evaluation of novel cancer agents requires models that accurately reflect the biology and molecular characteristics of human tumors. Molecular profiles of eight pancreatic ductal adenocarcinoma patient tumors were compared to corresponding passages of xenografts obtained by grafting tumor fragments into immunocompromised mice. Molecular characterization was performed by copy number analysis, gene expression and microRNA microarrays, mutation analysis, short tandem repeat (STR) profiling, and immunohistochemistry. Xenografts were found to be highly representative of their respective tumors, with a high degree of genetic stability observed by STR profiling and mutation analysis. Copy number variation (CNV) profiles of early and late xenograft passages were similar, with recurrent losses on chromosomes 1p, 3p, 4q, 6, 8p, 9, 10, 11q, 12p, 15q, 17, 18, 20p, and 21 and gains on 1q, 5p, 8q, 11q, 12q, 13q, 19q, and 20q. Pearson correlations of gene expression profiles of tumors and xenograft passages were above 0.88 for all models. Gene expression patterns between early and late passage xenografts were highly stable for each individual model. Changes observed in xenograft passages largely corresponded to human stromal compartment genes and inflammatory processes. While some differences exist between the primary tumors and corresponding xenografts, the molecular profiles remain stable after extensive passaging. Evidence for stability in molecular characteristics after several rounds of passaging lends confidence to clinical relevance and allows for expansion of models to generate the requisite number of animals required for cohorts used in drug screening and development studies.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Variações do Número de Cópias de DNA , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos SCID , MicroRNAs/genética , Mutação , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único
9.
J Biol Chem ; 280(8): 6554-60, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15611047

RESUMO

Proteins are commonly viewed as modular assemblies of functional domains. We analyzed a loss-of-function mutation in the Caenorhabditis elegans intracellular receptor DAF-12, a conservative substitution of an arginine to a lysine at position 197 (R197K). Arg(197) resides in region similar to a nuclear localization signal, just downstream of the receptor minimal zinc finger DNA binding domain (DBD) core. We found that the R197K, but not mutations of neighboring arginine or lysine residues, dramatically reduced DAF-12 transcriptional regulatory activity in a yeast reporter assay. This reduction in regulatory activity correlated with greatly decreased DNA binding affinity in vitro, suggesting a role for the DAF-12 DBD C-terminal region (dbdC), and specifically for Arg(197), in DNA binding. Remarkably, three basic residues immediately contiguous with Arg(197) played little role in DNA binding and rather affected nuclear localization; in contrast, Arg(197) itself was dispensable for nuclear localization. Thus, DAF-12 dbdC harbors overlapping but separable determinants of DNA binding and nuclear localization in a single small region.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/fisiologia , DNA/metabolismo , Sinais de Localização Nuclear , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Caenorhabditis elegans/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Ativação Transcricional
10.
Genes Dev ; 18(20): 2529-44, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15489294

RESUMO

Intracellular receptor DAF-12 regulates dauer formation and developmental age and affects Caenorhabditis elegans lifespan. Genetic analyses place DAF-12 at the convergence of several signal transduction pathways; however, the downstream effectors and the molecular basis for the receptor's multiple physiological outputs are unknown. Beginning with C. elegans genomic DNA, we devised a procedure for multiple rounds of selection and amplification that yielded fragments bearing DAF-12-binding sites. These genomic fragments mediated DAF-12-dependent transcriptional regulation both in Saccharomyces cerevisiae and in C. elegans; that is, they served as functional DAF-12 response elements. We determined that most of the genomic fragments that displayed DAF-12 response element activity in yeast were linked to genes that were regulated by DAF-12 in C. elegans; indeed, the response element-containing fragments typically resided within clusters of DAF-12-regulated genes. DAF-12 target gene regulation was developmental program and stage specific, potentially predicting a fit of these targets into regulatory networks governing aspects of C. elegans reproductive development and dauer formation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Genes Reguladores/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Elementos de Resposta/genética , Animais , Sequência de Bases , Sítios de Ligação/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Polarização de Fluorescência , Genes Reguladores/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde , Dados de Sequência Molecular , Oligonucleotídeos , Receptores Citoplasmáticos e Nucleares/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae , Análise de Sequência de DNA , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA