Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AMB Express ; 11(1): 18, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33433783

RESUMO

Microbial degradation of recalcitrant alkanes under anaerobic conditions results in the accumulation of heavy oil fraction in oil reservoirs. Hydroxylation of alkanes is an important activation mechanism under anaerobic conditions, but the diversity and distribution of the responsible microorganisms in the subsurface environment are still unclear. The lack of functional gene polymerase chain reaction (PCR) primers and commercially available intermediate degradation chemical compounds are the major obstacles for this research. In this investigation, PCR primers for the ahyA gene (encoding alkane hydroxylase) were designed, evaluated, and improved based on the nucleotide sequences available. Using microbial genomic DNA extracted from oil-contaminated soil and production water samples of oil reservoirs, ahyA gene nucleotide sequences were amplified and retrieved successfully from production water sample Z3-25 of Shengli oilfield. Additionally, the signature biomarker of 2-acetylalkanoic acid was detected in both Shengli and Jiangsu oilfields. These results demonstrate that anaerobic hydroxylation is an active mechanism used by microorganisms to degrade alkanes in oxygen-depleted oil reservoirs. This finding expands the current knowledge of biochemical reactions about alkane degradation in subsurface ecosystems. In addition, the PCR primers designed and tested in this study serve as an effective molecular tool for detecting the microorganisms responsible for anaerobic hydroxylation of alkanes in this and other ecosystems.

2.
Environ Sci Technol ; 54(17): 10610-10620, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786606

RESUMO

Microbial anaerobic alkane degradation is a key process in subsurface oil reservoirs and anoxic environments contaminated with petroleum, with a major impact on global carbon cycling. However, the thermophiles capable of water-insoluble paraffins (>C17) degradation under methanogenic conditions has remained understudied. Here, we established thermophilic (55 °C) n-paraffins-degrading (C21-C30) cultures from an oil reservoir. After over 900 days of incubation, the even-numbered n-paraffins were biodegraded to methane. The bacterial communities are dominated by a novel class-level lineage of actinobacteria, 'Candidatus Syntraliphaticia'. These 'Ca. Syntraliphaticia'-like metagenome-assembled genomes (MAGs) encode a complete alkylsuccinate synthases (ASS) gene operon, as well as hydrogenases and formate dehydrogenase, and several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. Metatranscriptomic analysis suggests that n-paraffins are activated via fumarate addition reaction, and oxidized into carbon dioxide, hydrogen/formate and acetate by 'Ca. Syntraliphaticia', that could be further converted to methane by the abundant hydrogenotrophic and acetoclastic methanogens. We also found a divergent methyl-CoM reductase-like complex (MCR) and a canonical MCR in two MAGs representing 'Ca. Methanosuratus' (within candidate phylum Verstraetearchaeota), indicating the capability of methane and short-chain alkane metabolism in the oil reservoir. Ultimately, this result offers new insights into the degradability and the mechanisms of n-paraffins under methanogenic conditions at high temperatures.


Assuntos
Euryarchaeota , Parafina , Alcanos , Anaerobiose , Metano , Filogenia
3.
ISME J ; 13(9): 2377-2390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31171858

RESUMO

The hydrocarbon-enriched environments, such as oil reservoirs and oil sands tailings ponds, contain a broad diversity of uncultured microorganisms. Despite being one of the few prokaryotic lineages that is consistently detected in both production water from oil reservoirs and stable hydrocarbon-degrading enrichment cultures originated from oil reservoirs, the physiological and ecological roles of candidate phylum "Atribacteria" (OP9/JS1) are not known in deep subsurface environments. Here, we report the expanded metabolic capabilities of Atribacteria as inferred from genomic reconstructions. Seventeen newly assembled medium-to-high-quality metagenomic assembly genomes (MAGs) were obtained either from co-assembly of two metagenomes from an Alaska North Slope oil reservoir or from previous studies of metagenomes coming from different environments. These MAGs comprise three currently known genus-level lineages and four novel genus-level groups of OP9 and JS1, which expands the genomic coverage of the major lineages within the candidate phylum Atribacteria. Genes involved in anaerobic hydrocarbon degradation were found in seven MAGs associated with hydrocarbon-enriched environments, and suggest that some Atribacteria could ferment short-chain n-alkanes into fatty acid while conserving energy. This study expands predicted metabolic capabilities of Atribacteria (JS1) and suggests that they are mediating a key role in subsurface carbon cycling.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Lagoas/microbiologia , Alaska , Alcanos/química , Alcanos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fermentação , Genoma Bacteriano , Genômica , Hidrocarbonetos/química , Metagenoma , Campos de Petróleo e Gás , Filogenia , Lagoas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA