Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1558, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692352

RESUMO

Iron (Fe) is an essential nutrient, but is poorly bioavailable because of its low solubility in alkaline soils; this leads to reduced agricultural productivity. To overcome this problem, we first showed that the soil application of synthetic 2'-deoxymugineic acid, a natural phytosiderophore from the Poaceae, can recover Fe deficiency in rice grown in calcareous soil. However, the high cost and poor stability of synthetic 2'-deoxymugineic acid preclude its agricultural use. In this work, we develop a more stable and less expensive analog, proline-2'-deoxymugineic acid, and demonstrate its practical synthesis and transport of its Fe-chelated form across the plasma membrane by Fe(III)•2'-deoxymugineic acid transporters. Possibility of its use as an iron fertilizer on alkaline soils is supported by promotion of rice growth in a calcareous soil by soil application of metal free proline-2'-deoxymugineic acid.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Fertilizantes , Ferro/química , Ácido Azetidinocarboxílico/química , Sideróforos/química , Solo/química
2.
ACS Appl Mater Interfaces ; 13(2): 3166-3174, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33400502

RESUMO

Although mixed matrix membranes (MMM) possess remarkably improved gas separation performance compared to traditional polymeric membranes, membrane stability including CO2 plasticization and aging is still a serious issue due to the existence of interfacial defects. In this work, we report an efficient and less destructive route to cross-link the MOFs/polyimide (PI) MMM, where amine group-functionalized MOF (NH2-UiO-66) nanoparticles are thermally cross-linked with a carboxylic acid-functionalized PI (COOH-PI) matrix to form an amide bond at the interface at 150 °C under vacuum condition. Such a chemical cross-linking strategy conducted at a relatively mild condition improves membrane stability greatly while ensuring that the membrane structure is not destroyed. The resulting cross-linked MMM achieves enhanced mechanical strength with higher Young's modulus than a pristine polymer membrane. The CO2 antiplasticization pressure of the MMM after cross-linking is enhanced by 200% from ∼10 to >30 bar and the CO2 permeability of MMM only drops slightly from 995 to 735 Barrer after 450 days. At the same time, the separation performance of H2/CH4 gas pair surpasses the 2008 upper bound and that of CO2/CH4 gas pair nearly approaches the 2008 upper bound. The cross-linking strategy used herein provides a feasible and effective route for improving membrane stability and membrane performance in the MMM system for gas separation.

3.
ChemSusChem ; 11(16): 2744-2751, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29808569

RESUMO

Polyimide-based materials provide attractive chemistries for the development of gas-separation membranes. Modification of inter- and intra-chain interactions is a route to improve the separation performance. In this work, copolyimides with Tröger's base (TB) monomers are designed and synthesized. In particular, a series of copolyimides is synthesized with different contents of carboxylic acid groups (0-50 wt %) to alter the inter- and intra-chain interactions and enhance the basicity of the TB-polyimides. A detailed thermal and structural analysis is provided for the new copolyimides. Gas permeation data reveal a tunable trend in separation performance with increasing carboxylic acid group content. Importantly, this is one of the few examples of copolyimide membranes materials that show enhanced plasticization resistance to high-pressure gas feeds through physical cross-linking.

4.
ACS Appl Mater Interfaces ; 10(20): 17366-17374, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29708720

RESUMO

The development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin-film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to the typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2 s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs result in high-performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a twofold enhanced plasticization resistance compared to non-pentiptycene-containing PU membranes.

5.
RSC Adv ; 8(12): 6326-6330, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35540415

RESUMO

Microporous polyimides (PIM-PIs, KAUST-PIs) and polymers containing Tröger's base (TB) derivatives with improved permeability and selectivity have great importance for separation of environmental gas pairs. Despite the tremendous progress in this field, facile synthesis of microporous polymers at the industrial scale via designing new monomers is still lacking. In this study, a new potential approach for large scale synthesis of spirobisindane diamine (DAS) (3) has been reported from commercially available 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (TTSBI) and 3,4-difluoronitrobenzene. A series of DAS diamine based microporous polyimides were also synthesized. The resulting polymer membranes showed high mechanical and thermal properties with tunable gas separation performance.

6.
Beilstein J Org Chem ; 10: 841-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778739

RESUMO

A single crystal of pyrenylsumanene was found to exhibit both columnar and herringbone crystal packing. The sumanene moieties form unidirectional columnar structures based on π-π stacking while the pyrene moieties generate herringbone structures due to CH-π interactions. The absorption and emission maxima of pyrenylsumanene were both red-shifted relative to those of sumanene and pyrene, owing to the extension of π-conjugation. Monomer emission with high quantum yield (0.82) was observed for pyrenylsumanene in solution, while excimer-type red-shifted emission was evident in the crystalline phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA