Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853926

RESUMO

All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.

2.
N Engl J Med ; 390(21): 1985-1997, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38838312

RESUMO

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).


Assuntos
Variação Genética , Doenças Raras , Sequenciamento Completo do Genoma , Humanos , Doenças Raras/genética , Doenças Raras/diagnóstico , Genoma Humano , Testes Genéticos , Estudos de Coortes , Sequenciamento do Exoma , Masculino , Feminino , Análise de Sequência de DNA , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Exoma , Fenótipo
3.
Res Sq ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38659911

RESUMO

Background: Steroid-resistant nephrotic syndrome is the second leading cause of chronic kidney disease among patients <25 years of age. Through whole exome sequencing, identification of >65 monogenic causes has rendered insights into disease mechanisms of nephrotic syndrome. Methods: To elucidate novel monogenic causes of NS, we combined homozygosity mapping with ES in a worldwide cohort of 1649 pediatric patients with NS. Results: We identified homozygous missense variants in MYO1C in two unrelated children with nephrotic syndrome (c.292C>T, p.R98W; c.2273 A>T, p.K758M). We evaluated publicly available kidney single-cell RNA sequencing datasets and found MYO1Cto be predominantly expressed in podocytes. We then performed structural modeling in molecular viewer PyMol using the super function aligning shared regions within both partial structures of MYO1C (4byf and 4r8g). In both structures, calmodulin, a common regulator of myosin activity, is shown to bind to the IQ motif. At both residue sites (K758; R98), there are ion-ion interactions stabilizing intradomain and ligand interactions: R98 binds to nearby D220 within the Myosin Motor Domain and K758 binds to E14 on a calmodulin molecule. Variants of these charged residues to non-charged amino acids could ablate these ionic interactions, weakening protein structure and function establishing the impact of these variants. Conclusion: We here identified recessive variants in MYO1C as a potential novel cause of nephrotic syndrome in children.

4.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565148

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Exoma , Doenças Raras , Humanos , Variações do Número de Cópias de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Exoma/genética , Masculino , Feminino , Estudos de Coortes , Testes Genéticos/métodos
5.
Am J Physiol Renal Physiol ; 326(5): F780-F791, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482553

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.


Assuntos
Proteínas de Membrana , Camundongos Knockout , Síndrome Nefrótica , Fenótipo , Podócitos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Masculino , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia , Podócitos/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Camundongos , Vetores Genéticos
6.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429302

RESUMO

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

7.
Pediatr Nephrol ; 39(2): 455-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37670083

RESUMO

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25-30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort. METHODS: We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation. RESULTS: We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing. CONCLUSIONS: We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Síndrome Nefrótica , Adulto , Criança , Humanos , Adulto Jovem , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Predisposição Genética para Doença , Homozigoto , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/congênito , Deleção de Sequência
8.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873196

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

9.
Nat Rev Nephrol ; 19(11): 709-720, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37524861

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.


Assuntos
Insuficiência Renal Crônica , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Humanos , Rim/anormalidades , Anormalidades Urogenitais/diagnóstico , Sistema Urinário/anormalidades , Refluxo Vesicoureteral/genética , Insuficiência Renal Crônica/genética
10.
Nephron ; 147(11): 685-692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37499630

RESUMO

INTRODUCTION: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first 3 decades of life. Over 40 genes have been identified as causative for isolated human CAKUT. However, many genes remain unknown, and the prioritization of potential CAKUT candidate genes is challenging. To develop an independent approach to prioritize CAKUT candidate genes, we hypothesized that monogenic CAKUT genes are most likely co-expressed along a temporal axis during kidney development and that genes with coinciding high expression may represent strong novel CAKUT candidate genes. METHODS: We analyzed single-cell mRNA (sc-mRNA) transcriptomics data of human fetal kidney for temporal sc-mRNA co-expression of 40 known CAKUT genes. A maximum of high expression in consecutive timepoints of kidney development was found for four of the 40 genes (EYA1, SIX1, SIX2, and ITGA8) in nephron progenitor cells a, b, c, d (NPCa-d). We concluded that NPCa-d are relevant for CAKUT pathogenesis and intersected two lists of CAKUT candidate genes resulting from unbiased whole-exome sequencing (WES) with the 100 highest expressed genes in NPCa-d. RESULTS: Intersection of the 100 highest expressed genes in NPCa-d with WES-derived CAKUT candidate genes identified an overlap with the candidate genes KIF19, TRIM36, USP35, CHTF18, in each of which a biallelic variant was detected in different families with CAKUT. CONCLUSION: Sc-mRNA expression data of human fetal kidney can be utilized to prioritize WES-derived CAKUT candidate genes. KIF19, TRIM36, USP35, and CHTF18 may represent strong novel candidate genes for CAKUT.


Assuntos
Transcriptoma , Sistema Urinário , Humanos , Rim/anormalidades , Sistema Urinário/anormalidades , RNA Mensageiro , Proteínas de Homeodomínio , Endopeptidases
11.
Am J Med Genet A ; 191(8): 2083-2091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37213061

RESUMO

Neurogenic bladder is caused by disruption of neuronal pathways regulating bladder relaxation and contraction. In severe cases, neurogenic bladder can lead to vesicoureteral reflux, hydroureter, and chronic kidney disease. These complications overlap with manifestations of congenital anomalies of the kidney and urinary tract (CAKUT). To identify novel monogenic causes of neurogenic bladder, we applied exome sequencing (ES) to our cohort of families with CAKUT. By ES, we have identified a homozygous missense variant (p.Gln184Arg) in CHRM5 (cholinergic receptor, muscarinic, 5) in a patient with neurogenic bladder and secondary complications of CAKUT. CHRM5 codes for a seven transmembrane-spanning G-protein-coupled muscarinic acetylcholine receptor. CHRM5 is shown to be expressed in murine and human bladder walls and is reported to cause bladder overactivity in Chrm5 knockout mice. We investigated CHRM5 as a potential novel candidate gene for neurogenic bladder with secondary complications of CAKUT. CHRM5 is similar to the cholinergic bladder neuron receptor CHRNA3, which Mann et al. published as the first monogenic cause of neurogenic bladder. However, functional in vitro studies did not reveal evidence to strengthen the status as a candidate gene. Discovering additional families with CHRM5 variants could help to further assess the genes' candidate status.


Assuntos
Bexiga Urinaria Neurogênica , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Humanos , Camundongos , Animais , Bexiga Urinaria Neurogênica/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Rim/anormalidades , Camundongos Knockout
12.
Nat Commun ; 14(1): 2481, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120605

RESUMO

Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome Nefrótica , Humanos , Criança , Síndrome Nefrótica/genética , Predisposição Genética para Doença , Haplótipos , Fatores de Risco , Polimorfismo de Nucleotídeo Único
13.
Acta Paediatr ; 112(6): 1324-1332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847718

RESUMO

AIM: The earlier the onset of proteinuria, the higher the incidence of genetic forms. Therefore, we aimed to analyse the spectrum of monogenic proteinuria in Egyptian children presenting at age <2 years. METHODS: The results of 27-gene panel or whole-exome sequencing were correlated with phenotype and treatment outcomes in 54 patients from 45 families. RESULTS: Disease-causing variants were identified in 29/45 (64.4%) families. Mutations often occurred in three podocytopathy genes: NPHS1, NPHS2 and PLCE1 (19 families). Some showed extrarenal manifestations. Additionally, mutations were detected in 10 other genes, including novel variants of OSGEP, SGPL1 and SYNPO2. COL4A variants phenocopied isolated steroid-resistant nephrotic syndrome (2/29 families, 6.9%). NPHS2 M1L was the single most common genetic finding beyond the age of 3 months (4/18 families, 22.2%). Biopsy results did not correlate with genotypes (n = 30). On renin-angiotensin-aldosterone system antagonists alone, partial and complete remission occurred in 3/24 (12.5%) patients with monogenic proteinuria each, whereas 6.3% (1/16) achieved complete remission on immunosuppression. CONCLUSION: Genotyping is mandatory to avoid biopsies and immunosuppression when proteinuria presents at age <2 years. Even with such a presentation, COL4A genes should be included. NPHS2 M1L was prevalent in Egyptian children (4 months-2 years) with proteinuria, demonstrating precision diagnostic utility.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Síndrome Nefrótica , Humanos , Remissão Espontânea , Egito , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndrome Nefrótica/terapia , Proteinúria/genética , Mutação
14.
Am J Med Genet A ; 191(5): 1355-1359, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694287

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of chronic kidney disease that manifests in children. To date ~23 different monogenic causes have been implicated in isolated forms of human CAKUT, but the vast majority remains elusive. In a previous study, we identified a homozygous missense variant in E26 transformation-specific (ETS) Variant Transcription Factor 4 (ETV4) causing CAKUT via dysregulation of the transcriptional function of ETV4, and a resulting abrogation of GDNF/RET/ETV4 signaling pathway. This CAKUT family remains the only family with an ETV4 variant reported so far. Here, we describe one additional CAKUT family with a homozygous truncating variant in ETV4 (p.(Lys6*)) that was identified by exome sequencing. The variant was found in an individual with isolated CAKUT displaying posterior urethral valves and renal dysplasia. The newly identified stop variant conceptually truncates the ETS_PEA3_N and ETS domains that regulate DNA-binding transcription factor activity. The variant has never been reported homozygously in the gnomAD database. To our knowledge, we here report the first CAKUT family with a truncating variant in ETV4, potentially causing the isolated CAKUT phenotype observed in the affected individual.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Criança , Humanos , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/metabolismo , Refluxo Vesicoureteral/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo
15.
Genet Med ; 25(3): 100351, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571463

RESUMO

PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.


Assuntos
Nefrolitíase , Receptores Purinérgicos P2 , Humanos , Oxalato de Cálcio , Nefrolitíase/genética , Mutação de Sentido Incorreto/genética , Transportadores de Sulfato/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo
16.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414417

RESUMO

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Cães , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
17.
medRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38328047

RESUMO

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort. Methods: GS was performed for 744 individuals with rare disease who were genetically undiagnosed. Analysis included review of single nucleotide, indel, structural, and mitochondrial variants. Results: We successfully solved 218/744 (29.3%) cases using GS, with most solves involving established disease genes (157/218, 72.0%). Of all solved cases, 148 (67.9%) had previously had non-diagnostic ES. We systematically evaluated the 218 causal variants for features requiring GS to identify and 61/218 (28.0%) met these criteria, representing 8.2% of the entire cohort. These included small structural variants (13), copy neutral inversions and complex rearrangements (8), tandem repeat expansions (6), deep intronic variants (15), and coding variants that may be more easily found using GS related to uniformity of coverage (19). Conclusion: We describe the diagnostic yield of GS in a large and diverse cohort, illustrating several types of pathogenic variation eluding ES or other techniques. Our results reveal a higher diagnostic yield of GS, supporting the utility of a genome-first approach, with consideration of GS as a secondary or tertiary test when higher-resolution structural variant analysis is needed or there is a strong clinical suspicion for a condition and prior targeted genetic testing has been negative.

18.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185583

RESUMO

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

19.
Kidney Int ; 101(5): 1039-1053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227688

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.


Assuntos
Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Criança , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/diagnóstico , Proteínas Roundabout
20.
J Clin Endocrinol Metab ; 107(6): e2513-e2522, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35137152

RESUMO

CONTEXT: Familial pituitary diabetes insipidus has been described only in an autosomal dominant or recessive mode of inheritance. OBJECTIVE: This work aims to determine the cause of a novel form of familial diabetes insipidus (DI) that is controlled by desmopressin therapy but segregates in an X-linked recessive manner. METHODS: Thirteen members from 3 generations of the kindred with familial DI were studied. Water intake, urine volume, urine osmolality, plasma osmolality, and plasma vasopressin were measured under basal conditions, during fluid deprivation, 3% saline infusion, and water loading. Magnetic resonance images of the posterior pituitary also were obtained. In affected males, the effects of desmopressin therapy and linkage of the DI to markers for chromosome Xq28 were determined. In addition, the genes encoding vasopressin, aquaporin-2, the AVPR2 receptor, and its flanking regions were sequenced. RESULTS: This study showed that 4 males from 3 generations of the kindred have DI that is due to a deficiency of vasopressin, is corrected by standard doses of desmopressin, and segregates with markers for the AVPR2 gene in Xq28. However, no mutations were found in AVPR2 or its highly conserved flanking regions. Exome sequencing confirmed these findings and also revealed no deleterious variants in the provasopressin and aquaporin-2 genes. The 4 obligate female carriers osmo-regulated vasopressin in the low normal range. CONCLUSION: X-linked recessive transmission of DI can be due to a defect in either the secretion or the action of vasopressin. Other criteria are necessary to differentiate and manage the 2 disorders correctly.


Assuntos
Diabetes Insípido Nefrogênico , Diabetes Insípido , Diabetes Mellitus , Aquaporina 2/genética , Desamino Arginina Vasopressina/uso terapêutico , Diabetes Insípido/genética , Diabetes Insípido Nefrogênico/genética , Feminino , Humanos , Masculino , Receptores de Vasopressinas/genética , Vasopressinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA