Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(17): 14622-14629, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557652

RESUMO

Neuromorphic computing is an emerging area with prospects to break the energy efficiency bottleneck of artificial intelligence (AI). A crucial challenge for neuromorphic computing is understanding the working principles of artificial synaptic devices. As an emerging class of synaptic devices, organic electrochemical transistors (OECTs) have attracted significant interest due to ultralow voltage operation, analog conductance tuning, mechanical flexibility, and biocompatibility. However, little work has been focused on the first-principal modeling of the synaptic behaviors of OECTs. The simulation of OECT synaptic behaviors is of great importance to understanding the OECT working principles as neuromorphic devices and optimizing ultralow power consumption neuromorphic computing devices. Here, we develop a two-dimensional transient drift-diffusion model based on modified Shockley equations for poly(3,4-ethylenedioxythiophene) (PEDOT)-based OECTs. We reproduced the typical transistor characteristics of these OECTs including the unique non-monotonic transconductance-gate bias curve and frequency dependency of transconductance. Furthermore, typical synaptic phenomena, such as excitatory/inhibitory postsynaptic current (EPSC/IPSC), paired-pulse facilitation/depression (PPF/PPD), and short-term plasticity (STP), are also demonstrated. This work is crucial in guiding the experimental exploration of neuromorphic computing devices and has the potential to serve as a platform for future OECT device simulation based on a wide range of semiconducting materials.

2.
ACS Omega ; 7(1): 168-175, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036688

RESUMO

The rapidly developing artificial intelligence (AI) requires revolutionary computing architectures to break the energy efficiency bottleneck caused by the traditional von Neumann computing architecture. In addition, the emerging brain-machine interface also requires computational circuitry that can conduct large parallel computational tasks with low energy cost and good biocompatibility. Neuromorphic computing, a novel computational architecture emulating human brains, has drawn significant interest for the aforementioned applications due to its low energy cost, capability to parallelly process large-scale data, and biocompatibility. Most efforts in the domain of neuromorphic computing focus on addressing traditional AI problems, such as handwritten digit recognition and file classification. Here, we demonstrate for the first time that current neuromorphic computing techniques can be used to solve key machine learning questions in cheminformatics. We predict the band gaps of small-molecule organic semiconductors and classify chemical reaction types with a simulated neuromorphic circuitry. Our work can potentially guide the design and fabrication of elementary devices and circuitry for neuromorphic computing specialized for chemical purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA