Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.787
Filtrar
1.
MycoKeys ; 106: 97-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938761

RESUMO

Ganoderma is a large and diverse genus containing fungi that cause white rot to infect a number of plant families. This study describes G.phyllanthicola and G.suae as new species from Southwest China, based on morphological and molecular evidence. Ganodermaphyllanthicola is characterized by dark brown to purplish black pileus surface with dense concentric furrows, pale yellow margin, irregular pileipellis cells, small pores (5-7 per mm) and ellipsoid to sub-globose basidiospores (8.5-10.0 × 6.0-7.5 µm). Ganodermasuae is characterized by reddish brown to oxblood red pileus surface and lead gray to greyish-white pore surface, heterogeneous context, wavy margin and almond-shaped to narrow ellipsoid basidiospores (8.0-10.5 × 5.0-7.0 µm). The phylogeny of Ganoderma is reconstructed with multi-gene sequences: the internal transcribed spacer region (ITS), the large subunit (nrLSU), translation elongation factor 1-α gene (TEF-1α) and the second subunit of RNA polymerase II (RPB2). The results show that G.suae and G.phyllanthicola formed two distinct line-ages within Ganoderma. Descriptions, illustrations and phylogenetic analyses results of the two new species are presented.

2.
Adv Mater ; : e2405682, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877752

RESUMO

Assembling ultrathin nanosheets into layered structure represents one promising way to fabricate high-performance nanocomposites. However, how to minimize the internal defects of the layered assemblies to fully exploit the intrinsic mechanical superiority of nanosheets remains challenging. Here, we develop a dual-scale spatially confined strategy for the co-assembly of ultrathin nanosheets with different aspect ratios into a near-perfect layered structure. Large-aspect-ratio (LAR) nanosheets are aligned due to the microscale confined space of a flat microfluidic channel, small-aspect-ratio (SAR) nanosheets are aligned due to the nanoscale confined space between adjacent LAR nanosheets. During this co-assembly process, SAR nanosheets can flatten LAR nanosheets, thus reducing wrinkles and pores of the assemblies. Benefiting from the precise alignment (orientation degree of 90.74%) of different-sized nanosheets, efficient stress transfer between nanosheets and interlayer matrix is achieved, resulting in layered nanocomposites with multiscale mechanical enhancement and superior fatigue durability (100,000 bending cycles). The proposed co-assembly strategy can be used to orderly integrate high-quality nanosheets with different sizes or diverse functions towards high-performance or multifunctional nanocomposites. This article is protected by copyright. All rights reserved.

3.
J Am Chem Soc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865282

RESUMO

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

4.
Open Med (Wars) ; 19(1): 20240982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883336

RESUMO

Carnosine dipeptidase 1 (CNDP1), an enzyme integral to the hydrolysis of dipeptides containing histidine, plays an indispensable role in myriad physiological processes, including hydrolysis of proteins, maturation of specific biochemical functionalities within proteins, tissue regeneration, and regulation of cell cycle. However, the implications of CNDP1 in oncogenesis and its prognostic value are not yet fully elucidated. Initially, we procured the GSE40367 dataset from the Gene Expression Omnibus and established a protein-protein interaction network. Thereafter, we conducted functional and pathway enrichment analyses utilizing GO, KEGG, and GSEA. Moreover, we undertook an association analysis concerning the expression of CNDP1 with immune infiltration, along with survival analysis across various cancers and specifically in hepatocellular carcinoma (HCC). Our study uncovered a total of 2,248 differentially expressed genes, with a down-regulation of CNDP1 in HCC and other cancers. Our explorations into the relationship between CNDP1 and immune infiltration disclosed a negative correlation between CNDP1 expression and the presence of immune cells in HCC. Survival analyses revealed that diminished expression of CNDP1 correlates with an adverse prognosis in HCC and several other types of cancer. These observations intimate that CNDP1 holds promise as a novel prognostic biomarker for both pan-cancer and HCC.

5.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915641

RESUMO

In medial prefrontal cortex (mPFC), fast-spiking parvalbumin (PV) interneurons regulate excitability and microcircuit oscillatory activity important for cognition. Although PV interneurons inhibit pyramidal neurons, they themselves express δ subunits of GABAA receptors important for slow inhibition. However, the specific contribution of δ-containing GABAA receptors to the function of PV interneurons in mPFC is unclear. We explored cellular, synaptic, and local-circuit activity in PV interneurons and pyramidal neurons in mouse mPFC after selectively deleting δ subunits in PV interneurons (cKO mice). In current-clamp recordings, cKO PV interneurons exhibited a higher frequency of action potentials and higher input resistance than wild type (WT) PV interneurons. Picrotoxin increased firing and GABA decreased firing in WT PV interneurons but not in cKO PV interneurons. The δ-preferring agonist THIP reduced spontaneous inhibitory postsynaptic currents in WT pyramidal neurons but not in cKO pyramidal neurons. In WT slices, depolarizing the network with 400 nM kainate increased firing of pyramidal neurons but had little effect on PV interneuron firing. By contrast, in cKO slices kainate recruited PV interneurons at the expense of pyramidal neurons. At the population level, kainate induced broadband increases in local field potentials in WT but not cKO slices. These results on cells and the network can be understood through increased excitability of cKO PV interneurons. In summary, our study demonstrates that δ-containing GABAA receptors in mPFC PV interneurons play a crucial role in regulating their excitability and the phasic inhibition of pyramidal neurons, elucidating intricate mechanisms governing cortical circuitry. Significance statement: By selectively deleting δ-containing GABAA receptors in PV interneurons, we demonstrate the importance of these receptors on PV interneuron excitability, synaptic inhibition of pyramidal neurons, and circuit function.

6.
Angew Chem Int Ed Engl ; : e202408458, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872327

RESUMO

Constructing structural materials from sustainable raw materials is considered an efficient way to reduce the potential threat posed by plastics. Nevertheless, challenges remain regarding combining excellent mechanical and thermal properties, especially the balance of strength and toughness. Here, we report a 3D nanofiber network interfacial design strategy to strengthen and toughen all-natural structural materials simultaneously. The introduced protonated chitosan at the interface between the surface oxidized 3D nanonetwork of bacterial cellulose forms the interfacial interlocking structure of nanonetworks, achieving a robust physical connection and providing enough physical contact sites for chemical crosslinking. The obtained sustainable structural material successfully integrates excellent mechanical and thermal properties on the nanoscale of cellulose nanofibers, such as light weight, high strength, and superior thermal expansion coefficient. The relationship between structural design and comprehensive mechanical property improvement is analyzed in detail, providing a universal perspective to design sustainable high-performance structural materials from nanoscale building blocks.

7.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890863

RESUMO

The adsorption characteristics of ß-glucooligosaccharides on activated carbon and the purification were systematically investigated. The maximum adsorption capacity of activated carbon reached 0.419 g/g in the optimal conditions. The adsorption behavior was described to be monolayer, spontaneous, and exothermic based on several models' fitting results. Five fractions with different degrees of polymerization (DPs) and structures of ß-glucooligosaccharides were obtained by gradient ethanol elution. 10E mainly contained disaccharides with dp2a (G1→6G) and dp2b (G1→3G). 20E possessed trisaccharides with dp3a (G1→6G1→3G) and dp3b (G1→3G1→3G). 30E mainly consisted of dp3a and dp4a (G1→3G1→3(G1→6)G), dp4b (G1→6G1→3G1→3G), and dp4c (G1→3G1→3G1→3G). In addition to tetrasaccharides, 40E and 50E also contained pentasaccharides and hexasaccharides with ß-(1→3)-linked or ß-(1→6)-linked glucose residues. All fractions could inhibit the accumulation of intracellular reactive oxygen species (ROS) in H2O2-induced Caco-2 cells, and they could improve oxidative stress damage by increasing the activity of superoxide dismutase (SOD) and reduced glutathione (GSH), which were related to their DPs and structures. 50E with high DPs showed better anti-oxidative stress activity.

8.
Orbit ; : 1-10, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815212

RESUMO

PURPOSE: The aim of this study was to assess predictors and outcomes of subperiosteal abscess (SPA) management in adolescents and adults at two tertiary care centers. METHODS: This retrospective cohort study included cases of SPA from January 1 2000 to October 9 2022 at two institutions. Patients 9 years or older were categorized into surgical and nonsurgical cohorts. Surgical subgroups included those who underwent functional endoscopic sinus surgery (FESS) alone, external (transcutaneous or transconjunctival) orbitotomy alone, or combined FESS and external surgery. The presented features were assessed as potential treatment predictors. Outcomes included length of stay (LOS), final best-corrected visual acuity (BCVA), readmission rate, and reoperation rate. RESULTS: Of the 159 SPA cases included, 127 (79.9%) underwent surgery and 32 (20.1%) were managed nonsurgically. The nonsurgical cohort was younger (p = .003) with smaller abscesses (p < .001) that were more likely to be medial (p < .001). The nonsurgical cohort had shorter LOS (p < .001); final BCVA and readmission rates were similarly favorable. Abscess location was correlated with surgical approach. Superior SPA that underwent FESS or external surgery alone had higher reoperation rates (57.1.0% and 58.3%, respectively) than combined (17.9%). External approach and FESS alone resulted in lower reoperation rates (15.4% and 15.0%, respectively) than combined (27.3%) for medial SPA. Subgroup analysis in the sinusitis cohort yielded similar results. CONCLUSIONS: A trial of nonsurgical management may be safe and effective for select patients aged 9 years and older with sinusitis-derived, medial, and small SPA. When surgery is indicated, approach should be guided by abscess location to minimize reoperation risk.

9.
Transl Oncol ; 45: 101986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723299

RESUMO

Microvascular invasion (MVI) is an adverse prognostic indicator of tumor recurrence after surgery for hepatocellular carcinoma (HCC). Therefore, developing a nomogram for estimating the presence of MVI before liver resection is necessary. We retrospectively included 260 patients with pathologically confirmed HCC at the Fifth Medical Center of Chinese PLA General Hospital between January 2021 and April 2024. The patients were randomly divided into a training cohort (n = 182) for nomogram development, and a validation cohort (n = 78) to confirm the performance of the model (7:3 ratio). Significant clinical variables associated with MVI were then incorporated into the predictive nomogram using both univariate and multivariate logistic analyses. The predictive performance of the nomogram was assessed based on its discrimination, calibration, and clinical utility. Serum carnosine dipeptidase 1 ([CNDP1] OR 2.973; 95 % CI 1.167-7.575; p = 0.022), cirrhosis (OR 8.911; 95 % CI 1.922-41.318; p = 0.005), multiple tumors (OR 4.095; 95 % CI 1.374-12.205; p = 0.011), and tumor diameter ≥3 cm (OR 4.408; 95 % CI 1.780-10.919; p = 0.001) were independent predictors of MVI. Performance of the nomogram based on serum CNDP1, cirrhosis, number of tumors and tumor diameter was achieved with a concordance index of 0.833 (95 % CI 0.771-0.894) and 0.821 (95 % CI 0.720-0.922) in the training and validation cohorts, respectively. It fitted well in the calibration curves, and the decision curve analysis further confirmed its clinical usefulness. The nomogram, incorporating significant clinical variables and imaging features, successfully predicted the personalized risk of MVI in HCC preoperatively.

10.
Mil Med Res ; 11(1): 31, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797843

RESUMO

Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.


Assuntos
Envelhecimento , Genômica , Proteômica , Medicina Regenerativa , Envelhecimento/fisiologia , Humanos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Genômica/métodos , Proteômica/métodos , Metabolômica/métodos , Epigenômica/métodos , Multiômica
11.
Small ; : e2401159, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716681

RESUMO

Defects can introduce atomic structural modulation and tailor performance of materials. Herein, it demonstrates that semiconductor WO3 with inert electrocatalytic behavior can be activated through defect-induced tensile strains. Structural characterizations reveal that when simply treated in Ar/H2 atmosphere, oxygen vacancies will generate in WO3 and cause defective structures. Stacking faults are found in defects, thus modulating electronic structure and transforming electrocatalytic-inert WO3 into highly active electrocatalysts. Density functional theory (DFT) calculations are performed to calculate *H adsorption energies on various WOx surfaces, revealing the oxygen vacancy composition and strain predicted to optimize the catalytic activity of hydrogen evolution reaction (HER). Such defective tungsten oxides can be integrated into commercial proton exchange membrane (PEM) electrolyser with comparable performance toward Pt-based PEM. This work demonstrates defective metal oxides as promising non-noble metal catalysts for commercial PEM green-hydrogen generation.

12.
BMC Mol Cell Biol ; 25(1): 16, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750444

RESUMO

BACKGROUND: Oxidative stress is implicated in the pathogenesis of heart failure. Dual oxidase 1 (DUOX1) might be important in heart failure development through its mediating role in oxidative stress. This study was designed to evaluate the potential role of DUOX1 in heart failure. MATERIALS AND METHODS: AC16 cells were treated with 2 µmol/L of doxorubicin (DOX) for 12, 24, and 48 h to construct a heart failure model. DUOX1 overexpression and silencing in AC16 cell were established. DUOX1 expression was detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pyroptosis and reactive oxygen species (ROS) production were measured by flow cytometry. RESULTS: Increased DUOX1 expression levels were observed after DOX treatment for 24 h in AC16 cells. DUOX1 silencing inhibited DOX-induced pyroptosis and ROS production. The release of IL-1ß, IL-18, and lactate dehydrogenase (LDH), and expression levels of pyroptosis-related proteins were also decreased. DUOX1 overexpression increased pyroptosis, ROS production, IL-1ß, IL-18, and LDH release, and pyroptosis-related protein expression. N-acetyl-cysteine (NAC) significantly reversed DUOX1-induced pyroptosis, ROS, and related factors. CONCLUSION: These results suggest that DUOX1-derived genotoxicity could promote heart failure development. In the process, oxidative stress and pyroptosis may be involved in the regulation of DUOX1 in heart failure.


Assuntos
Caspase 1 , Doxorrubicina , Oxidases Duais , Insuficiência Cardíaca , Estresse Oxidativo , Piroptose , Espécies Reativas de Oxigênio , Regulação para Cima , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Oxidases Duais/metabolismo , Oxidases Duais/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Doxorrubicina/farmacologia , Caspase 1/metabolismo , Linhagem Celular , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo
13.
Water Res ; 258: 121778, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795549

RESUMO

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.


Assuntos
Nitrogênio , Oxirredução , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo
14.
Adv Mater ; : e2402695, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742820

RESUMO

Flexible supercapacitors can potentially power next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexible conditions is limited by the weak bonding between adjacent layers, posing a significant hindrance to their practical applicability. Herein, based on the uninterrupted 3D network during the growth of bacterial cellulose (BC), a flexible all-in-one supercapacitor is cultivated through a continuous biosynthesis process. This strategy ensures the continuity of the 3D network of BC throughout the material, thereby forming a continuous electrode-separator-electrode structure. Benefitting from this bioinspired structure, the all-in-one supercapacitor not only achieves a high areal capacitance (3.79 F cm-2) of electrodes but also demonstrates the integration of high tensile strength (2.15 MPa), high shear strength (more than 54.6 kPa), and high bending resistance, indicating a novel pathway toward high-performance flexible power sources.

15.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585911

RESUMO

GABA A receptors containing δ subunits have been shown to mediate tonic/slow inhibition in the CNS. These receptors are typically found extrasynaptically and are activated by relatively low levels of ambient GABA in the extracellular space. In the mouse neocortex, δ subunits are expressed on the surface of some pyramidal cells as well as on parvalbumin positive (PV+) interneurons. An important function of PV+ interneurons is the organization of coordinated network activity that can be measured by EEG; however, it remains unclear what role tonic/slow inhibitory control of PV+ neurons may play in shaping oscillatory activity. After confirming a loss of functional δ mediated tonic currents in PV cells in cortical slices from mice lacking Gabrd in PV+ neurons (PV δcKO), we performed EEG recordings to survey network activity across wake and sleep states. PV δcKO mice showed altered spectral content of EEG during NREM and REM sleep that was a result of increased oscillatory activity in NREM and the emergence of transient high amplitude bursts of theta frequency activity during REM. Viral reintroduction of Gabrd to PV+ interneurons in PV δcKO mice rescued REM EEG phenotypes, supporting an important role for δ subunit mediated inhibition of PV+ interneurons for maintaining normal REM cortical oscillations. Significance statement: The impact on cortical EEG of inhibition on PV+ neurons was studied by deleting a GABA A receptor subunit selectively from these neurons. We discovered unexpected changes at low frequencies during sleep that were rescued by viral reintroduction.

16.
Sci Adv ; 10(14): eadl1884, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579002

RESUMO

Introducing natural Bouligand structure into synthetics is expected to develop high-performance structural materials. Interfibrous interface is critical to load transfer, and mechanical functionality of bioinspired Bouligand structure yet receives little attention. Here, we propose one kind of hierarchical and reconfigurable interfibrous interface based on moderate orderliness to mechanically reinforce bioinspired Bouligand structure. The interface imparted by moderate alignment of adaptable networked nanofibers hierarchically includes nanofiber interlocking and hydrogen-bonding (HB) network bridging, being expected to facilitate load transfer and structural stability through dynamic adjustment in terms of nanofiber sliding and HB breaking-reforming. As one demonstration, the hierarchical and reconfigurable interfibrous interface is constructed based on moderate alignment of networked bacterial cellulose nanofibers. We show that the resultant bioinspired Bouligand structural material exhibits unusual strengthening and toughening mechanisms dominated by interface-microstructure multiscale coupling. The proposed interfibrous interface enabled by moderate orderliness would provide mechanical insight into the assembly of widely existing networked nanofiber building blocks toward high-performance macroscopic bioinspired structural assemblies.

17.
Environ Sci Pollut Res Int ; 31(22): 32746-32765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662291

RESUMO

Insufficient freshwater recharge and climate change resulted in seawater intrusion in most of the coastal aquifers in Pakistan. Coastal aquifers represent diverse landcover types with varying spectral properties, making it challenging to extract information about their state hence, such investigation requires a combination of geospatial tools. This study aims to monitor erosion along the major coastal aquifers of Pakistan and propose an approach that combines data fusion into the machine and deep learning image segmentation architectures for the erosion and accretion assessment in seascapes. The analysis demonstrated the image segmentation U-Net with EfficientNet backbone achieved the highest F1 score of 0.93, while ResNet101 achieved the lowest F1 score of 0.77. Resultant erosion maps indicated that Sandspit experiencing erosion at 3.14 km2 area. Indus delta is showing erosion, approximately 143 km2 of land over the past 30 years. Sonmiani has undergone substantial erosion with 52.2 km2 land. Miani Hor has experienced erosion up to 298 km2, Bhuri creek has eroded over 4.11 km2, east Phitii creek over 3.30 km2, and Waddi creek over 3.082 km2 land. Tummi creek demonstrates erosion, at 7.12 km2 of land, and East Khalri creek near Keti Bandar has undergone a measured loss of 5.2 km2 land linked with quantified reduction in the vertical sediment flow from 50 (billion cubic meters) to 10 BCM. Our analysis suggests that intense erosions are primarily a result of reduced sediment flow and climate change. Addressing this issue needs to be prioritized coastal management and climate change mitigation framework in Pakistan to safeguard communities. Leveraging emerging solutions, such as loss and damage financing and the integration of nature-based solutions (NbS), should be prioritized for the revival of the coastal aquifers.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Paquistão , Monitoramento Ambiental/métodos , Erosão do Solo , Mudança Climática
18.
Nat Commun ; 15(1): 3208, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615045

RESUMO

Investigations of one-dimensional segmented heteronanostructures (1D-SHs) have recently attracted much attention due to their potentials for applications resulting from their structure and synergistic effects between compositions and interfaces. Unfortunately, developing a simple, versatile and controlled synthetic method to fabricate 1D-SHs is still a challenge. Here we demonstrate a stress-induced axial ordering mechanism to describe the synthesis of 1D-SHs by a general under-stoichiometric reaction strategy. Using the continuum phase-field simulations, we elaborate a three-stage evolution process of the regular segment alternations. This strategy, accompanied by easy chemical post-transformations, enables to synthesize 25 1D-SHs, including 17 nanowire-nanowire and 8 nanowire-nanotube nanostructures with 13 elements (Ag, Te, Cu, Pt, Pb, Cd, Sb, Se, Bi, Rh, Ir, Ru, Zn) involved. This ordering evolution-driven synthesis will help to investigate the ordering reconstruction and potential applications of 1D-SHs.

19.
Cell Rep ; 43(4): 114095, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613787

RESUMO

Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.


Assuntos
Ribonucleoproteínas , Canais de Cátion TRPV , Ubiquitinação , Viroses , Animais , Humanos , Camundongos , Regulação para Baixo , Células HEK293 , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Ribonucleoproteínas/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Viroses/metabolismo
20.
BMC Musculoskelet Disord ; 25(1): 287, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614972

RESUMO

BACKGROUND: An accessory extreme far anteromedial portal can improve visualisation and ease inferior leaf meniscectomy in patients with lateral meniscal anterior horn horizontal tears. However, the therapeutic outcomes of adding an accessory extreme far anteromedial portal remain unclear. This study aimed to evaluate the clinical efficacy of adding an accessory extreme far anteromedial portal for treating lateral meniscal horizontal tears involving the anterior horns. METHODS: This retrospective study included 101 patients with anterior horn involvement in lateral meniscal horizontal tears who underwent arthroscopic unstable inferior leaf meniscectomy between January 2016 and December 2020. The pathologies were diagnosed using physical examinations and magnetic resonance imaging. The anterior horn involved in the lateral meniscal horizontal tears was treated using inferior leaf meniscectomy. The primary endpoints were changes in the visual analogue scale, Lysholm, International Knee Documentation Committee, and Tegner scores at the final follow-up. The secondary endpoint was meniscal cure rate at 3 months postoperatively. The preoperative and postoperative functional scores were compared. The occurrence of complications was recorded. RESULTS: All patients were followed up for an average of 4.9 ± 1.2 years (range 2.3-7.5 years). After 4 months, none of the patients experienced pain, weakness, instability, or tenderness in the lateral joint line, achieving an imaging cure rate of 98%. At the final follow-up, significant postoperative improvements were observed in the average values of the visual analogue scale score (3.5 ± 0.7 vs. 0.7 ± 0.6), Lysholm score (62.7 ± 4.4 vs. 91.8 ± 3.1), International Knee Documentation Committee score (61.9 ± 3.7 vs. 91.7 ± 9.5), and Tegner score (2.0 ± 0.7 vs. 6.1 ± 0.7). Excellent Lysholm scores were obtained in 81 patients, and good outcomes were obtained in 18 patients, with an excellent-to-good rate of 98.0%. CONCLUSIONS: Inferior leaf resection via the accessory far anteromedial portal is a safe treatment option for the involved anterior horn in lateral meniscal horizontal tears. This approach enhances visibility and facilitates surgical procedures, with minimal complications.


Assuntos
Meniscectomia , Meniscos Tibiais , Animais , Humanos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Estudos Retrospectivos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Artroscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA