Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(15): 6687-6694, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39073856

RESUMO

Molecular docking (MD) is a crucial task in drug design, which predicts the position, orientation, and conformation of the ligand when it is bound to a target protein. It can be interpreted as a combinatorial optimization problem, where quantum annealing (QA) has shown a promising advantage for solving combinatorial optimization. In this work, we propose a novel quantum molecular docking (QMD) approach based on a QA-inspired algorithm. We construct two binary encoding methods to efficiently discretize the degrees of freedom with an exponentially reduced number of bits and propose a smoothing filter to rescale the rugged objective function. We propose a new quantum-inspired algorithm, hopscotch simulated bifurcation (hSB), showing great advantages in optimizing over extremely rugged energy landscapes. This hSB can be applied to any formulation of an objective function under binary variables. An adaptive local continuous search is also introduced for further optimization of the discretized solution from hSB. Concerning the stability of docking, we propose a perturbation detection method to help rank the candidate poses. We demonstrate our approach on a typical data set. QMD has shown advantages over the search-based Autodock Vina and the deep-learning DIFFDOCK in both redocking and self-docking scenarios. These results indicate that quantum-inspired algorithms can be applied to solve practical problems in drug discovery even before quantum hardware become mature.

2.
J Mol Model ; 30(7): 228, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916778

RESUMO

CONTEXT: Conformation generation, also known as molecular unfolding (MU), is a crucial step in structure-based drug design, remaining a challenging combinatorial optimization problem. Quantum annealing (QA) has shown great potential for solving certain combinatorial optimization problems over traditional classical methods such as simulated annealing (SA). However, a recent study showed that a 2000-qubit QA hardware was still unable to outperform SA for the MU problem. Here, we propose the use of quantum-inspired algorithm to solve the MU problem, in order to go beyond traditional SA. We introduce a highly compact phase encoding method which can exponentially reduce the representation space, compared with the previous one-hot encoding method. For benchmarking, we tested this new approach on the public QM9 dataset generated by density functional theory (DFT). The root-mean-square deviation between the conformation determined by our approach and DFT is negligible (less than about 0.5Å), which underpins the validity of our approach. Furthermore, the median time-to-target metric can be reduced by a factor of five compared to SA. Additionally, we demonstrate a simulation experiment by MindQuantum using quantum approximate optimization algorithm (QAOA) to reach optimal results. These results indicate that quantum-inspired algorithms can be applied to solve practical problems even before quantum hardware becomes mature. METHODS: The objective function of MU is defined as the sum of all internal distances between atoms in the molecule, which is a high-order unconstrained binary optimization (HUBO) problem. The degree of freedom of variables is discretized and encoded with binary variables by the phase encoding method. We employ the quantum-inspired simulated bifurcation algorithm for optimization. The public QM9 dataset is generated by DFT. The simulation experiment of quantum computation is implemented by MindQuantum using QAOA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA