Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39316490

RESUMO

Optical computing systems provide high-speed and low-energy data processing but face deficiencies in computationally demanding training and simulation-to-reality gaps. We propose a gradient-based model-free optimization (G-MFO) method based on a Monte Carlo gradient estimation algorithm for computationally efficient in situ training of optical computing systems. This approach treats an optical computing system as a black box and back-propagates the loss directly to the optical computing weights' probability distributions, circumventing the need for a computationally heavy and biased system simulation. Our experiments on diffractive optical computing systems show that G-MFO outperforms hybrid training on the MNIST and FMNIST datasets. Furthermore, we demonstrate image-free and high-speed classification of cells from their marker-free phase maps. Our method's model-free and high-performance nature, combined with its low demand for computational resources, paves the way for accelerating the transition of optical computing from laboratory demonstrations to practical, real-world applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39316639

RESUMO

Many active pharmaceutical ingredients have a specific bitter taste. To enhance patient compliance and treatment efficacy, taste-masking agents are crucial in oral drug formulations. Confronting numerous bitter drug molecules with varied structures, the pharmaceutical field strives to explore and develop universal and effective masking approaches. Here, we reported sulfonated azocalix[4]arene (SAC4A), a universal supramolecular masking agent with deep cavity that provides stronger hydrophobic effect and larger interaction area during recognition, allowing high binding affinity to bitter drug molecules. Moreover, bitter drugs could deeply buried in the cavity, with the bitterness effectively masked. As a result, SAC4A can bind to 16 different bitter drugs with high affinities, encompassing alkaloids, flavonoids, terpenoids, and more, while maintaining high biocompatibility. As anticipated, SAC4A effectively masks the unpalatable bitter taste associated with these drugs. Consequently, SAC4A is a promising universal and effective supramolecular masking agent.

3.
Sci Rep ; 14(1): 22065, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333567

RESUMO

A novel, parameter-independent multiscale correlational constitutive model has been devised to predict thermomechanical properties of Si-diamond-SiC and Si-diamond composites, including the effective elastic modulus, effective bulk modulus, effective shear modulus, effective Poisson's ratio, average coefficients of thermal expansion as well as thermal conductivity. Based on this model, the effective thermomechanical response of two kinds of composites was simulated, and the underlying mechanisms of thermomechanical coupling between constituents were also critically evaluated. The findings were shown that the effective elastic properties of composites, including effective elastic modulus, effective bulk modulus, effective shear modulus, increased with diamond and SiC, and that the introduction of dispersed diamond with highly thermal conductivity and lowly thermal expansion significantly enhanced thermophysical properties of Si-diamond-SiC composites. The thermomechanical coupling of these composites was influenced by the effective elastic properties of composites and the disparity in the intrinsic properties of constituents.

4.
Immunol Lett ; 270: 106927, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265918

RESUMO

Hematopoietic progenitor cells (HPCs) in bone marrow with limited abilities for self-renewal and differentiation continuously supply hematopoietic cells through life. When suffering infection or inflammation, HPCs will actively proliferate to provide differentiated hematopoietic cells to maintain hematopoietic homeostasis. Poly(I:C), an agonist of TLR3, can specifically activate Type I interferon (IFN-I) signaling which exerts anti-inflammatory effects and influence hematopoiesis after infection. However, the effects of Poly(I:C)-induced IFN-I on the bone marrow hematopoietic system still deserve attention. In this study, our results revealed the efficacy of the IFN-I model, with a remarkably decrease in HPCs and a sharp elevation in LSKs numbers after single dose of Poly(I:C) injection. Apoptotic ratios of HPCs and LSKs significantly increased 48 h after Poly(I:C) treatment. Application of Poly(I:C) prompted the transition of HPCs and LSKs from G0 to G1 phases, potentially leading to the accelerated exhaustion of HPCs. From the cobblestone area-forming cell (CAFC) assay, we speculate that Poly(I:C) impairs the differentiation capacity of HPCs as well as their colony-forming ability. RT-qPCR and immunohistochemistry revealed significant upregulation of IFN-I associated genes and proteins following Poly(I:C) treatment. In conclusion, a single dose of Poly(I:C) induced an acute detrimental effect on HPCs within 48 h potentially due to TLR3 engagement. This activation cascaded into a robust IFN-I response emanating from the bone marrow, underscoring the intricate immunological dynamics at play following Poly(I:C) intervention.

5.
Front Neurosci ; 18: 1424719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228411

RESUMO

Background: Apoptosis has been recognized as a critical pathophysiological process during cerebral ischemia. The neuroprotective effect of CART on ischemic brain injury is determined. However, there is little research on the protective effect of CART on neural stem cells (NSCs). Methods: Primary cultured rat NSCs were utilized as the research subject. In vitro oxygen glucose deprivation (OGD) treatment was employed, and NSCs were extracted from SD pregnant rats following previous experimental protocols and identified through cell immunofluorescence staining. The appropriate concentration of CART affecting OGD NSCs was initially screened using Cell Counting Kit-8 (CCK-8) and Lactate Dehydrogenase (LDH) assays. EdU staining and Western blotting (WB) techniques were employed to assess the impact of the suitable CART concentration on the proliferation and apoptosis of OGD NSCs. Finally, Western blot analysis was conducted to investigate the cAMP-response element binding protein (CREB) pathway and expression levels of related proteins after KG-501 treatment in order to elucidate the mechanism underlying apoptosis and proliferation regulation in OGD NSCs. Results: CCK-8 and LDH assays indicated that a concentration of 0.8 nM CART may be the optimal concentration for modulating the proliferation of OGD NSCs. Subsequently, cellular immunofluorescence and EdU detection experiments further confirmed the findings obtained from CCK-8 analysis. Western blot analysis of apoptosis-related protein expression also demonstrated that an appropriate concentration of CART could suppress the apoptosis of OGD NSCs. Finally, Western blotting was conducted to examine the CREB pathway and related protein expression after treatment with KG-501, revealing that an appropriate concentration of CART regulated both apoptosis and proliferation in OGD NSCs through CREB signaling. Conclusion: The concentration of CART at 0.8 nM may be deemed appropriate for inhibiting apoptosis and promoting proliferation in OGD NSCs in vitro. The mechanism maybe through activating the CREB pathway.

6.
Carbohydr Polym ; 344: 122503, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218541

RESUMO

Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.


Assuntos
Materiais Biocompatíveis , Mananas , Engenharia Tecidual , Mananas/química , Humanos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos
7.
Poult Sci ; 103(11): 104175, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216267

RESUMO

The in ovo feeding (IOF) of L-arginine (L-Arg) to chick embryos is a viable method for improving early intestinal development, subsequently leading to an acceleration in growth rate during the posthatch stage. However, the liver, being the pivotal organ for energy metabolism in poultry, the precise effects and mechanisms of L-Arg on the liver development and metabolism remain unclear. To elucidate these, the present study injected 2 doses of L-Arg (10 mg/egg and 15 mg/egg) into the embryos of Hongyao chickens at 17.5 d of incubation, subsequently incubating them until d 19 for further analysis. IOF of 15 mg L-Arg/egg significantly increased the organ indices of liver and small intestine, as well as the duodenal villus height/crypt depth. RNA-Seq analysis of liver tissues showed that the metabolism of xenobiotics, amino acid metabolism, and the fatty acid metabolism were significantly enriched in L-Arg injection group. The core differentially expressed genes (DEGs) were primarily involved in cell proliferation and fatty acid metabolism. The CCK8 assays revealed that supplemental L-Arg significantly enhanced the proliferation of primary embryo hepatocytes and leghorn male hepatoma (LMH) cells. Upregulation of core DEGs, including HBEGF, HES4, NEK3, EGR1, and USP2, significantly promoted the proliferation of liver cells. Additionally, analysis of triglyceride and total cholesterol content, as well as oil red O staining, indicated that supplemental L-Arg effectively reduced lipid accumulation. Overall, L-Arg supplementation in late chick embryos may promote early liver and small intestine development by reducing liver lipid deposition and enhancing energy efficiency, necessitating further experimental validation. This study provides profound insights into the molecular regulatory network of L-Arg in promoting the development of chicken embryos. The identified DEGs that promote cell proliferation and lipid metabolism can serve as novel targets for further developing methods to enhance early development of chicken embryos.


Assuntos
Arginina , Proliferação de Células , Galinhas , Ácidos Graxos , Hepatócitos , Fígado , RNA-Seq , Animais , Embrião de Galinha/efeitos dos fármacos , Arginina/farmacologia , Arginina/administração & dosagem , Arginina/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/embriologia , Galinhas/crescimento & desenvolvimento , Galinhas/genética , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/metabolismo , RNA-Seq/veterinária , Suplementos Nutricionais/análise , Masculino
8.
JMIR AI ; 3: e58455, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207843

RESUMO

BACKGROUND: Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019. OBJECTIVE: We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD. METHODS: We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods. RESULTS: The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level. CONCLUSIONS: This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.

9.
Mol Nutr Food Res ; : e2400297, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165040

RESUMO

SCOPE: The prevalence of high-fat diet (HFD) consumption is increasing among middle-aged and older adults, which accelerates the aging process of this population and is more likely to induce lipid metabolism disorders. But the alleviation of ethanolic extract of propolis (EEP) on lipid metabolism disorders during aging remains unclear. METHODS AND RESULTS: This study assesseed the impact of EEP intervention (200 mg kg-1 bw) on aging and lipid metabolism disorders in HFD-fed senescence accelerate mouse prone 8 (SAMP8) mice. Findings indicate that EEP ameliorates hair luster degradation and weight gain, reduces systemic inflammation and metabolism levels, enhances hepatic antioxidant enzyme activities, and improves the hepatic expression of senescence-associated secretory phenotype and aging-related genes in HFD-fed SAMP8 mice. Histological staining demonstrates that EEP improves hepatic lipid deposition and inflammatory cell infiltration. Transcriptomic and lipidomic analysis reveal that EEP promotes fatty acid ß-oxidation by activating PPAR pathway, resulting in reduced hepatic lipid deposition, and attenuates bile acid (BA) accumulation by improving BA metabolism, which were ensured through qPCR validation of key genes and immunoblot validation of key proteins. CONCLUSIONS : EEP can regulate lipid metabolic dysregulation during aging accompanied by an HFD, potentially delaying the onset and progression of age-related diseases. This provides new approach for supporting healthy aging.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39196744

RESUMO

Medical image segmentation is a fundamental task in many clinical applications, yet current automated segmentation methods rely heavily on manual annotations, which are inherently subjective and prone to annotation bias. Recently, modeling annotator preference has garnered great interest, and several methods have been proposed in the past two years. However, the existing methods completely ignore the potential correlation between annotations, such as complementary and discriminative information. In this work, the Adaptive annotation CorrelaTion based multI-annOtation LearNing (ACTION) method is proposed for calibrated medical image segmentation. ACTION employs consensus feature learning and dynamic adaptive weighting to leverage complementary information across annotations and emphasize discriminative information within each annotation based on their correlations, respectively. Meanwhile, memory accumulation-replay is proposed to accumulate the prior knowledge and integrate it into the model to enable the model to accommodate the multi-annotation setting. Two medical image benchmarks with different modalities are utilized to evaluate the performance of ACTION, and extensive experimental results demonstrate that it achieves superior performance compared to several state-of-the-art methods.

11.
Eur J Med Res ; 29(1): 403, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095909

RESUMO

PURPOSE: This current study attempted to investigate whether one-stitch method (OM) of temporary ileostomy influenced the stoma-related complications after laparoscopic low anterior resection (LLAR). METHODS: We searched for eligible studies in four databases including PubMed, Embase, Cochrane Library, and CNKI from inception to July 20, 2023. Both surgical outcomes and stoma-related complications were compared between the OM group and the traditional method (TM) group. The Newcastle-Ottawa Scale (NOS) was adopted for quality assessment. RevMan 5.4 was conducted for data analyzing. RESULTS: Totally 590 patients from six studies were enrolled in this study (272 patients in the OM group and 318 patients in the TM group). No significant difference was found in baseline information (P > 0.05). Patients in the OM group had shorter operative time in both the primary LLAR surgery (MD = - 17.73, 95%CI = - 25.65 to - 9.80, P < 0.01) and the stoma reversal surgery (MD = - 18.70, 95%CI = - 22.48 to -14.92, P < 0.01) than patients in the TM group. There was no significant difference in intraoperative blood loss of the primary LLAR surgery (MD = - 2.92, 95%CI = - 7.15 to 1.32, P = 0.18). Moreover, patients in the OM group had fewer stoma-related complications than patients in the TM group (OR = 0.55, 95%CI = 0.38 to 0.79, P < 0.01). CONCLUSION: The OM group had shorter operation time in both the primary LLAR surgery and the stoma reversal surgery than the TM group. Moreover, the OM group had less stoma-related complications.


Assuntos
Ileostomia , Laparoscopia , Complicações Pós-Operatórias , Neoplasias Retais , Humanos , Ileostomia/efeitos adversos , Ileostomia/métodos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Neoplasias Retais/cirurgia , Complicações Pós-Operatórias/etiologia , Estomas Cirúrgicos/efeitos adversos , Duração da Cirurgia , Feminino , Masculino
12.
RSC Adv ; 14(35): 25481-25489, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39139227

RESUMO

Incorporating nano-SiO2 particles into cement paste has garnered significant attention for enhancing the performance of hardened cement paste. However, the agglomeration of nanoparticles in the pore solution of cement-water system poses a challenge for cost-effective and efficient applications. Meanwhile, superplasticizers containing phosphate groups exhibit strong complexation with calcium ions and show promise in improving the dispersion performance. This study introduces a surface chemical modification technique to enhance the dispersibility of nano-SiO2. Firstly, poly(isoprenyl oxy poly(ethylene glycol) ether-random-vinylphosphonic acid) (PTPEG-VPA), a silanized superplasticizer containing phosphate moieties, is copolymerized and chemically grafted onto pristine nano-SiO2 surfaces through condensation and silanization processes. The resulting core-shell SiO2@PTPEG-VPA nanoparticles are comprehensively characterized using FT-IR spectroscopy, TGA, DLS, TEM, BET surface area analysis, and zeta potential measurements. The results indicate that introducing phosphate moieties improves the dispersion capacity of grafted copolymers, thereby reducing the severe agglomeration of nano-SiO2 in solution. Subsequently, the impact of SiO2@PTPEG-VPA on cement hydration and early-age strength development is investigated using microcalorimetry and TGA characterization. Finally, a mechanism is proposed to explain the observed retarding effects of grafted PTPEG-VPA on pristine SiO2. Overall, this study provides novel insights into the chemical design of nanoparticles, aimed at manipulating cement paste properties.

13.
World J Gastrointest Surg ; 16(7): 2096-2105, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39087136

RESUMO

BACKGROUND: The albumin-bilirubin (ALBI) score is a serum biochemical indicator of liver function and has been proven to have prognostic value in a variety of cancers. In colorectal cancer (CRC), a high ALBI score tends to be associated with poorer survival. AIM: To investigate the correlation between the preoperative ALBI score and outcomes in CRC patients who underwent radical surgery. METHODS: Patients who underwent radical CRC surgery between January 2011 and January 2020 at a single clinical center were included. The ALBI score was calculated by the formula (log10 bilirubin × 0.66) + (albumin × -0.085), and the cutoff value for grouping patients was -2.8. The short-term outcomes, overall survival (OS), and disease-free survival (DFS) were calculated. RESULTS: A total of 4025 CRC patients who underwent radical surgery were enrolled in this study, and there were 1908 patients in the low ALBI group and 2117 patients in the high ALBI group. Cox regression analysis revealed that age, tumor size, tumor stage, ALBI score, and overall complications were independent risk factors for OS; age, tumor stage, ALBI score, and overall complications were identified as independent risk factors for DFS. CONCLUSION: A high preoperative ALBI score is correlated with adverse short-term outcomes, and the ALBI score is an independent risk factor for OS and DFS in patients with CRC undergoing radical surgery.

14.
Animals (Basel) ; 14(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123699

RESUMO

Research on hepatic steatosis in animal husbandry has been a prominent area of study. Developing an appropriate in vitro cellular steatosis model is crucial for comprehensively investigating the mechanisms involved in liver lipid deposition in poultry and for identifying potential interventions to address abnormalities in lipid metabolism. The research on the methods of in vitro liver steatosis in chickens, particularly the effects of different fat mixtures, is still lacking. In this study, LMH cells were utilized to investigate the effects of OA, SO, PA, SP, and their pairwise combinations on steatosis development, with the aim of identifying the optimal conditions for inducing steatosis. Analysis of triglyceride (TG) content in LMH cells revealed that OA and SP had limited efficacy in increasing TG content, while a combination of SO and PA in a 1:2 ratio exhibited the highest TG content. Moreover, Oil Red O staining results in LMH cells demonstrated that the combination treatment had a more pronounced induction effect compared to 0.375 mM SO. Additionally, RNA-seq analysis showed that 0.375 mM SO significantly influenced the expression of genes associated with fatty acid metabolism compared to the control group, whereas the combination of SO and PA led to an enrichment of key GO terms associated with programmed cell death. These findings suggest that varying conditions of cellular steatosis could lead to distinct disruptions in gene expression. The optimal conditions for inducing steatosis in LMH cells were also tested on chicken embryonic liver cells and embryos. TG detection and Oil Red O staining assays showed that the combination of SO and PA successfully induced steatosis. However, the gene expression pattern differed from that of LMH cells. This study lays the foundations for further investigations into avian hepatic steatosis.

15.
Sci Rep ; 14(1): 17828, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090210

RESUMO

The liver plays a vital role in lipid synthesis and metabolism in poultry. To study the functional genes more effectively, it is essential to screen of reliable reference genes in the chicken liver, including females, males, embryos, as well as the Leghorn Male Hepatoma (LMH) cell line. Traditional reference gene screening involves selecting commonly used housekeeping genes (HKGs) for RT-qPCR experiments and using different algorithms to identify the most stable ones. However, this approach is limited in selecting the best reference gene from a small pool of HKGs. High-throughput sequencing technology may offer a solution to this limitation. This study aimed to identify the most consistently expressed genes by utilizing multiple published RNA-seq data of chicken liver and LMH cells. Subsequently, the stability of the newly identified reference genes was assessed in comparison to previously validated stable poultry liver expressed reference genes and the commonly employed HKGs using RT-qPCR. The findings indicated that there is a higher degree of similarity in stable expression genes between female and male liver (such as LSM14A and CDC40). In embryonic liver, the optimal new reference genes were SUDS3, TRIM33, and ERAL1. For LMH cells, the optimal new reference genes were ALDH9A1, UGGT1, and C21H1orf174. However, it is noteworthy that most HKGs did not exhibit stable expression across multiple samples, indicating potential instability under diverse conditions. Furthermore, RT-qPCR experiments proved that the stable expression genes identified from RNA-seq data outperformed commonly used HKGs and certain validated reference genes specific to poultry liver. Over all, this study successfully identified new stable reference genes in chicken liver and LMH cells using RNA-seq data, offering researchers a wider range of reference gene options for RT-qPCR in diverse situations.


Assuntos
Galinhas , Genes Essenciais , Fígado , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Animais , Galinhas/genética , Fígado/metabolismo , Masculino , Feminino , Reação em Cadeia da Polimerase em Tempo Real/normas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica/normas , Perfilação da Expressão Gênica/métodos , Linhagem Celular Tumoral , Embrião de Galinha
16.
Angew Chem Int Ed Engl ; 63(39): e202407757, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38978264

RESUMO

On the basis of a novel ynol-diene cyclization developed as a rapid access to tropone unit, the first divergent strategy to 17-nor-cephalotane diterpenoids has been successfully established. Combining with a bioinspired stereoselective dual hydrogenation, the divergent total synthesis of (+)-3-deoxyfortalpinoid F, (+)-harringtonolide, (-)-fortalpinoids M/N/P, and analog (-)-20-deoxocephinoid P have been achieved in 14-17 linear longest steps starting from commercially available materials.

17.
Poult Sci ; 103(9): 103980, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959666

RESUMO

Utilizing publicly available RNA-seq data to screen for ideal reference genes is more efficient and accurate than traditional methods. Previous studies have identified optimal reference genes in various chicken tissues, but none have specifically focused on the oviduct (including the infundibulum, magnum, isthmus, uterus, and vagina), which is crucial for egg production. Identifying stable reference genes in the oviduct is essential for improving research on gene expression levels. This study investigated genes with consistent expression patterns in the chicken oviduct, encompassing both individual oviduct tract tissues and the entire oviduct, by utilizing multiple RNA-seq datasets. The screening results revealed the discovery of 100 novel reference genes in each segment of oviduct tissues, primarily associated with cell cycle regulation and RNA binding. Moreover, the majority of housekeeping genes (HKGs) showed inconsistent expression levels across distinct samples, suggesting their lack of stability under varying conditions. The stability of the newly identified reference genes was assessed in comparison to previously validated stable reference genes in chicken oviduct and commonly utilized HKGs, employing traditional reference gene screening methods. HERPUD2, CSDE1, VPS35, PBRM1, LSM14A, and YWHAB were identified to be suitable novel reference gene for different parts of the oviduct. HERPUD2 and YWHAB were reliable for gene expression normalization throughout the oviduct tract. Furthermore, overexpression and interference assays in DF1 cells showed LSM14A and YWHAB play a crucial role in cell proliferation, highlighting the importance of these newly reference genes for further research. Overall, this study has expanded the options for reference genes in RT-qPCR experiments in different segments of the chicken oviduct and the entire oviduct.


Assuntos
Galinhas , Oviductos , Reação em Cadeia da Polimerase em Tempo Real , Animais , Galinhas/genética , Feminino , Oviductos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Genes Essenciais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Padrões de Referência , Perfilação da Expressão Gênica/veterinária , Perfilação da Expressão Gênica/normas
18.
Brain Res Bull ; 215: 111029, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009094

RESUMO

BACKGROUND: Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS: Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS: In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1ß, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS: Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.


Assuntos
Isquemia Encefálica , Microglia , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Timol , Animais , Timol/farmacologia , Timol/uso terapêutico , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Ratos , Ratos Sprague-Dawley , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Expert Rev Anti Infect Ther ; : 1-12, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38975666

RESUMO

BACKGROUND: The potential of ursodeoxycholic acid (UDCA) in inhibiting angiotensin-converting enzyme 2 was demonstrated. However, conflicting evidence emerged regarding the association between UDCA and COVID-19 outcomes, prompting the need for a comprehensive investigation. RESEARCH DESIGN AND METHODS: Patients diagnosed with COVID-19 infection were retrospectively analyzed and divided into two groups: the UDCA-treated group and the control group. Kaplan-Meier recovery analysis and Cox proportional hazards models were used to evaluate the recovery time and hazard ratios. Additionally, study-level pooled analyses for multiple clinical outcomes were performed. RESULTS: In the 115-patient cohort, UDCA treatment was significantly associated with a reduced recovery time. The subgroup analysis suggests that the 300 mg subgroup had a significant (adjusted hazard ratio: 1.63 [95% CI, 1.01 to 2.60]) benefit with a shorter duration of fever. The results of pooled analyses also show that UDCA treatment can significantly reduce the incidence of severe/critical diseases in COVID-19 (adjusted odds ratio: 0.68 [95% CI, 0.50 to 0.94]). CONCLUSIONS: UDCA treatment notably improves the recovery time following an Omicron strain infection without observed safety concerns. These promising results advocate for UDCA as a viable treatment for COVID-19, paving the way for further large-scale and prospective research to explore the full potential of UDCA.

20.
Front Oncol ; 14: 1372812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993640

RESUMO

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. In the treatment of patients with CRC, oxaliplatin plays a pivotal role, with moderate side effects. Neurotoxicity, myelosuppression, ototoxicity, delayed hypersensitivity reactions, and rhabdomyolysis induced by oxaliplatin have been reported individually. However, the occurrence of oxaliplatin-induced ascites has not been reported previously. The objectives of this case report were to elaborate on the rare occurrence of ascites in a patient with CRC after oxaliplatin therapy and to explore its characteristics and causes. Case description: We report on a case of upper rectal cancer seen in a 65-year-old man who underwent robotic-assisted laparoscopic anterior rectal resection. The patient developed ascites during postoperative adjuvant therapy with oxaliplatin and capecitabine. We ruled out tumor recurrence by laparoscopy, intraoperative biopsy, and biochemistry of the ascites. The patient did not experience a recurrence of ascites after discontinuation of chemotherapy. Conclusion: This case suggests that chemotherapy with oxaliplatin might cause ascites. The mechanism of the oxaliplatin-induced liver injury was further discussed, which might have been the cause of ascite formation. When patients with CRC who underwent chemotherapy with oxaliplatin develop ascites, surgeons should actively determine whether this is a side effect of chemotherapy or is due to tumor recurrence in order to avoid unnecessary surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA