Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(7): 238, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849627

RESUMO

Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.


Assuntos
Barreira Hematotesticular , Microplásticos , Poliestirenos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Masculino , Humanos , Barreira Hematotesticular/efeitos dos fármacos , Animais , Espermatogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Ambientais/toxicidade
2.
Free Radic Biol Med ; 221: 40-51, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38759901

RESUMO

Fine particulate matter (PM2.5), a significant component of air pollution particulate matter, is inevitable and closely associated with increasing male reproductive disorder. However, the testicular targets of PM2.5 and its toxicity related molecular mechanisms are still not fully understood. In this study, the conditional knockout (cKO) mice and primary Leydig cells were used to explore the testicular targets of PM2.5 and the related underlying mechanisms. First, apparent the structure impairment of seminiferous tubules, Leydig cells vacuolization, decline of serum testosterone and sperm quality reduction were found in male wild-type (WT) and Sirt1 knockout mice after exposure to PM2.5. Enrichment analyses revealed that differentially expressed genes (DEGs) were enriched in steroid hormone biosynthesis, ferroptosis, and HIF-1 signaling pathway in the mice testes after exposure to PM2.5, which were subsequently verified by the molecular biological analyses. Notably, similar enrichment analyses results were also observed in primary Leydig cells after treatment with PM2.5. In addition, Knockdown of Sirt1 significantly increased PM2.5-induced expression and activation of HIF-1α, which was in parallel to the changes of cellular iron levels, oxidative stress indicators and the ferroptosis markers. In conclusion, this highlights that PM2.5 triggers ferroptosis via SIRT1/HIF-1α signaling pathway to inhibit testosterone synthesis in males. These findings provide a novel research support for the study that PM2.5 causes male reproductive injury.


Assuntos
Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células Intersticiais do Testículo , Camundongos Knockout , Material Particulado , Transdução de Sinais , Sirtuína 1 , Testosterona , Animais , Masculino , Testosterona/metabolismo , Testosterona/sangue , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Transdução de Sinais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Testículo/metabolismo , Testículo/patologia , Testículo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Sci Total Environ ; 918: 170701, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325452

RESUMO

Epidemiological studies have found that long-term inhalation of PM2.5 is closely related to spermatogenesis disorders and infertility, but the underlying molecular mechanism is still unidentified. Testosterone, an essential reproductive hormone produced by Leydig cells, whose synthesis is disrupted by multiple environmental pollutants. In the current study, we explored the role of METTL3-m6A-SIRT1 axis-mediated abnormal autophagy in PM2.5-induced inhibition of testosterone production in in vivo and in vitro models. Our in vivo findings shown that long-term inhalation of PM2.5 decreased sperm count, increased sperm deformity rates, and altered testicular interstitial morphology accompanied by reduced testosterone in serum and testes. Further, data from the in vitro model displayed that exposure to PM2.5 caused an increase in m6A modification and METTL3 levels, followed by a decrease in testosterone levels and autophagy dysfunction in Leydig cells. The knockdown of METTL3 promotes autophagy flux and testosterone production in Leydig cells. Mechanistically, PM2.5 increased METTL3-induced m6A modification of SIRT1 mRNA in Leydig cells, bringing about abnormal autophagy. Subsequently, administration of SRT1720 (a SIRT1 activator) enhanced autophagy and further promoted testosterone biosynthesis. Collectively, our discoveries indicate that METTL3-m6A-SIRT1 axis-mediated autophagic flux contributes to PM2.5-induced inhibition of testosterone biosynthesis. This research offers a novel viewpoint on the mechanism of male reproductive injury following PM2.5 exposure.


Assuntos
Adenina/análogos & derivados , Células Intersticiais do Testículo , Testosterona , Masculino , Humanos , Sirtuína 1 , Sêmen , Material Particulado/toxicidade , Autofagia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA