Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Gut ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724219

RESUMO

OBJECTIVE: The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN: Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS: The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION: This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.

2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045337

RESUMO

Since dietary intake is challenging to directly measure in large-scale cohort studies, we often rely on self-reported instruments (e.g., food frequency questionnaires, 24-hour recalls, and diet records) developed in nutritional epidemiology. Those self-reported instruments are prone to measurement errors, which can lead to inaccuracies in the calculation of nutrient profiles. Currently, few computational methods exist to address this problem. In the present study, we introduce a deep-learning approach --- Microbiome-based nutrient profile corrector (METRIC), which leverages gut microbial compositions to correct random errors in self-reported dietary assessments using 24-hour recalls or diet records. We demonstrate the excellent performance of METRIC in minimizing the simulated random errors, particularly for nutrients metabolized by gut bacteria in both synthetic and three real-world datasets. Further research is warranted to examine the utility of METRIC to correct actual measurement errors in self-reported dietary assessment instruments.

3.
Lancet Reg Health West Pac ; 39: 100823, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37927990

RESUMO

Background: Continuous glucose monitoring (CGM) has shown potential in improving maternal and neonatal outcomes in individuals with type 1/2 diabetes, but data in gestational diabetes mellitus (GDM) is limited. We aimed to explore the relationship between CGM-derived metrics during pregnancy and pregnancy outcomes among women with GDM. Methods: We recruited 1302 pregnant women with GDM at a mean gestational age of 26.0 weeks and followed them until delivery. Participants underwent a 14-day CGM measurement upon recruitment. The primary outcome was any adverse pregnancy outcome, defined as having at least one of the outcomes: preterm birth, large-for-gestational-age (LGA) birth, fetal distress, premature rupture of membranes, and neonatal intensive care unit (NICU) admission. The individual outcomes included in the primary outcome were considered as secondary outcomes. We conducted multivariable logistic regression to evaluate the association of CGM-derived metrics with these outcomes. Findings: Per 1-SD difference in time above range (TAR), glucose area under the curve (AUC), nighttime mean blood glucose (MBG), daytime MBG, and daily MBG was associated with higher risk of any adverse pregnancy outcome, with odds ratio: 1.22 (95% CI 1.08-1.36), 1.22 (95% CI 1.09-1.37), 1.18 (95% CI 1.05-1.32), 1.21 (95% CI 1.07-1.35), and 1.22 (95% CI 1.09-1.37), respectively. Time in range, TAR, AUC, nighttime MBG, daytime MBG, daily MBG, and mean amplitude of glucose excursions were positively associated, while time blow range was inversely associated with the risk of LGA. Additionally, higher value for TAR was associated with higher risk of NICU admission. We further summarized the potential thresholds of TAR (2.5%) and daily MBG (4.8 mmol/L) to distinguish individuals with and without any adverse pregnancy outcome. Interpretation: The CGM-derived metrics may help identify individuals at higher risk of adverse pregnancy outcomes. These CGM biomarkers could serve as potential new intervention targets to maintain a healthy pregnancy status among women with GDM. Funding: National Key R&D Program of China, National Natural Science Foundation of China, and Westlake Laboratory of Life Sciences and Biomedicine.

4.
Cell Rep Med ; 4(9): 101172, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37652016

RESUMO

Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/epidemiologia , Prognóstico , Proteômica , Proteoma , Aprendizado de Máquina
5.
Am J Clin Nutr ; 118(3): 561-571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517614

RESUMO

BACKGROUND: Longitudinally conserved microbe-microbe interactions may provide insights to understand the complex dynamic system of early-life gut microbiota among preterm infants. OBJECTIVES: We aimed to profile the covarying network of gut microbiota among preterm infants and investigate its potential influence on host growth (2-5 y). METHODS: We collected time-series stool samples (n = 717 from children and n = 116 from mothers) among 51 preterm and 51 full-term infants from birth up to 5 y of age and among 53 mothers. The included infants underwent time-series measurements of early-life gut microbiota (0-5 y) and growth (2-5 y) from June 2014 to April 2017. The covarying taxa that exhibited consistent covariation from day 1 to year 5 were defined as conserved features in the development of gut microbiota. Childrens' height-for-age z score (HAZ) and weight-for-age z score were calculated according to World Health Organization Child Growth Standards. RESULTS: We observed distinct dynamic patterns of both microbial alpha and beta diversity comparing preterm infants with full-term controls during the very early stage (<3 mo). Moreover, we identified a covarying network containing 10 taxa as a conserved gut microbial feature of these preterm infants from birth to 5 y old. This covarying network was distinctive between preterm and full-term infants before 3 mo of age (P < 0.001) and tended to be similar as the infants grew up. Several covarying taxa of the network during early life (<3 mo) were associated with childhood growth (2-5 y) (eg, Clostridium_sensu_stricto_1 with HAZ, ß = -0.32, q < 0.01), and the human milk feeding duration was a main modulating factor. CONCLUSIONS: Preterm born children possess conserved and distinct covarying microbiota during very early life, which may have a profound influence on their growth later in life. This trial was registered at clinicaltrials.gov as NCT03373721.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano , Estudos Prospectivos
6.
Nutrients ; 15(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37432284

RESUMO

While the human gut is home to a complex and diverse community of microbes, including bacteria and fungi, research on the gut microbiome has largely focused on bacteria, with relatively little attention given to the gut mycobiome. This study aims to investigate how diets with different dietary macronutrient distributions impact the gut mycobiome. We investigated gut mycobiome response to high-carbohydrate, low-fat (HC) and low-carbohydrate high-fat (LC) diet interventions based on a series of 72-day feeding-based n-of-1 clinical trials. A total of 30 participants were enrolled and underwent three sets of HC and LC dietary interventions in a randomized sequence. Each set lasted for 24 days with a 6-day washout period between dietary interventions. We collected and analyzed the fungal composition of 317 stool samples before and after each intervention period. To account for intra-individual variation across the three sets, we averaged the mycobiome data from the repeated sets for analysis. Of the 30 participants, 28 (aged 22-34 years) completed the entire intervention. Our results revealed a significant increase in gut fungal alpha diversity (p < 0.05) and significant changes in fungal composition (beta diversity, p < 0.05) after the HC dietary intervention. Specifically, we observed the enrichment of five fungal genera (Pleurotus, Kazachstania, Auricularia, Paraphaeosphaeria, Ustilaginaceae sp.; FDR < 0.052) and depletion of one fungal genus (Blumeria; FDR = 0.03) after the HC intervention. After the LC dietary intervention, one fungal genus was enriched (Ustilaginaceae sp.; FDR = 0.003), and five fungal genera were depleted (Blumeria, Agaricomycetes spp., Malassezia, Rhizopus, and Penicillium; FDR < 0.1). This study provides novel evidence on how the gut mycobiome structure and composition change in response to the HC and LC dietary interventions and reveals diet-specific changes in the fungal genera.


Assuntos
Microbioma Gastrointestinal , Micobioma , Humanos , Nutrientes , Dieta com Restrição de Gorduras , Carboidratos
7.
Nat Commun ; 14(1): 896, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797296

RESUMO

Identification of protein quantitative trait loci (pQTL) helps understand the underlying mechanisms of diseases and discover promising targets for pharmacological intervention. For most important class of drug targets, genetic evidence needs to be generalizable to diverse populations. Given that the majority of the previous studies were conducted in European ancestry populations, little is known about the protein-associated genetic variants in East Asians. Based on data-independent acquisition mass spectrometry technique, we conduct genome-wide association analyses for 304 unique proteins in 2,958 Han Chinese participants. We identify 195 genetic variant-protein associations. Colocalization and Mendelian randomization analyses highlight 60 gene-protein-phenotype associations, 45 of which (75%) have not been prioritized in Europeans previously. Further cross-ancestry analyses uncover key proteins that contributed to the differences in the obesity-induced diabetes and coronary artery disease susceptibility. These findings provide novel druggable proteins as well as a unique resource for the trans-ancestry evaluation of protein-targeted drug discovery.


Assuntos
Doenças Cardiovasculares , Proteoma , Humanos , Proteoma/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
8.
Nat Commun ; 14(1): 571, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732517

RESUMO

Blood metabolome is commonly used in human studies to explore the associations of gut microbiota-derived metabolites with cardiometabolic diseases. Here, in a cohort of 1007 middle-aged and elderly adults with matched fecal metagenomic (149 species and 214 pathways) and paired fecal and blood targeted metabolomics data (132 metabolites), we find disparate associations with taxonomic composition and microbial pathways when using fecal or blood metabolites. For example, we observe that fecal, but not blood butyric acid significantly associates with both gut microbiota and prevalent type 2 diabetes. These findings are replicated in an independent validation cohort involving 103 adults. Our results suggest that caution should be taken when inferring microbiome-cardiometabolic disease associations from either blood or fecal metabolome data.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Adulto , Pessoa de Meia-Idade , Idoso , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S , Metaboloma , Metabolômica/métodos , Fezes
9.
Transl Neurodegener ; 11(1): 49, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376937

RESUMO

BACKGROUND: Microbiome-gut-brain axis may be involved in the progression of age-related cognitive impairment and relevant brain structure changes, but evidence from large human cohorts is lacking. This study was aimed to investigate the associations of gut microbiome with cognitive impairment and brain structure based on multi-omics from three independent populations. METHODS: We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) with both gut microbiome and cognitive assessment data available as a discovery cohort, of whom 272 individuals provided fecal samples twice before cognitive assessment. We selected 208 individuals with baseline microbiome data for brain magnetic resonance imaging during the follow-up visit. Fecal 16S rRNA and shotgun metagenomic sequencing, targeted serum metabolomics, and cytokine measurements were performed in the GNHS. The validation analyses were conducted in an Alzheimer's disease case-control study (replication study 1, n = 90) and another community-based cohort (replication study 2, n = 1300) with cross-sectional dataset. RESULTS: We found protective associations of specific gut microbial genera (Odoribacter, Butyricimonas, and Bacteroides) with cognitive impairment in both the discovery cohort and the replication study 1. Result of Bacteroides was further validated in the replication study 2. Odoribacter was positively associated with hippocampal volume (ß, 0.16; 95% CI 0.06-0.26, P = 0.002), which might be mediated by acetic acids. Increased intra-individual alterations in gut microbial composition were found in participants with cognitive impairment. We also identified several serum metabolites and inflammation-associated metagenomic species and pathways linked to impaired cognition. CONCLUSIONS: Our findings reveal that specific gut microbial features are closely associated with cognitive impairment and decreased hippocampal volume, which may play an important role in dementia development.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Estudos Transversais , Estudos de Casos e Controles , Cognição , Encéfalo/diagnóstico por imagem
10.
Am J Clin Nutr ; 116(4): 1049-1058, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36100971

RESUMO

BACKGROUND: Dietary diversity is essential for human health. The gut ecosystem provides a potential link between dietary diversity, host metabolism, and health, yet this mechanism is poorly understood. OBJECTIVES: Here, we aimed to investigate the relation between dietary diversity and the gut environment as well as host metabolism from a multiomics perspective. METHODS: Two independent longitudinal Chinese cohorts (a discovery and a validation cohort) were included in the present study. Dietary diversity was evaluated with FFQs. In the discovery cohort (n = 1916), we performed shotgun metagenomic and 16S ribosomal ribonucleic acid (rRNA) sequencing to profile the gut microbiome. We used targeted metabolomics to quantify fecal and serum metabolites. The associations between dietary diversity and the microbial composition were replicated in the validation cohort (n = 1320). RESULTS: Dietary diversity was positively associated with α diversity of the gut microbiota. We identified dietary diversity-related gut environment features, including the microbial structure (ß diversity), 68 microbial genera, 18 microbial species, 8 functional pathways, and 13 fecal metabolites. We further found 332 associations of dietary diversity and related gut environment features with circulating metabolites. Both the dietary diversity and diversity-related features were inversely correlated with 4 circulating secondary bile acids. Moreover, 16 mediation associations were observed among dietary diversity, diversity-related features, and the 4 secondary bile acids. CONCLUSIONS: These results suggest that high dietary diversity is associated with the gut microbial environment. The identified key microbes and metabolites may serve as hypotheses to test for preventing metabolic diseases.


Assuntos
Microbioma Gastrointestinal , Ácidos e Sais Biliares , China , Ecossistema , Fezes/química , Humanos , Estudos Prospectivos , RNA Ribossômico 16S/genética
11.
Nat Commun ; 13(1): 3002, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637254

RESUMO

Evidence from human cohorts indicates that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), yet whether gut microbiota plays a role is unclear. Here, in a longitudinal cohort (n = 1809), we find that the gut microbiota-bile acid axis may link the positive association between chronic insomnia and CMD. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 are the main genera mediating the positive association between chronic insomnia and CMD. These results are also observed in an independent cross-sectional cohort (n = 6122). The inverse associations between those gut microbial biomarkers and CMD are mediated by certain bile acids (isolithocholic acid, muro cholic acid and nor cholic acid). Habitual tea consumption is prospectively associated with the identified gut microbiota and bile acids in an opposite direction compared with chronic insomnia. Our work suggests that microbiota-bile acid axis may be a potential intervention target for reducing the impact of chronic insomnia on cardiometabolic health.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Distúrbios do Início e da Manutenção do Sono , Ácidos e Sais Biliares , Doenças Cardiovasculares/epidemiologia , Ácido Cólico , Estudos Transversais , Humanos
12.
BMC Med ; 20(1): 171, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35585555

RESUMO

BACKGROUND: The temporal relationship between adiposity and gut microbiota was unexplored. Whether some gut microbes lie in the pathways from adiposity to insulin resistance is less clear. Our study aims to reveal the temporal relationship between adiposity and gut microbiota and investigate whether gut microbiota may mediate the association of adiposity with insulin resistance in a longitudinal human cohort study. METHODS: We obtained repeated-measured gut shotgun metagenomic and anthropometric data from 426 Chinese participants over ~3 years of follow-up. Cross-lagged path analysis was used to examine the temporal relationship between BMI and gut microbial features. The associations between the gut microbes and insulin resistance-related phenotypes were examined using a linear mixed-effect model. We examined the mediation effect of gut microbes on the association between adiposity and insulin resistance-related phenotypes. Replication was performed in the HMP cohort. RESULTS: Baseline BMI was prospectively associated with levels of ten gut microbial species. Among them, results of four species (Adlercreutzia equolifaciens, Parabacteroides unclassified, Lachnospiraceae bacterium 3 1 57FAA CT1, Lachnospiraceae bacterium 7 1 58FAA) were replicated in the independent HMP cohort. Lachnospiraceae bacterium 3 1 57FAA CT1 was inversely associated with HOMA-IR and fasting insulin. Lachnospiraceae bacterium 3 1 57FAA CT1 mediated the association of overweight/obesity with HOMA-IR (FDR<0.05). Furthermore, Lachnospiraceae bacterium 3 1 57FAA CT1 was positively associated with the butyrate-producing pathway PWY-5022 (p < 0.001). CONCLUSIONS: Our study identified one potentially beneficial microbe Lachnospiraceae bacterium 3 1 57FAA CT1, which might mediate the effect of adiposity on insulin resistance. The identified microbes are helpful for the discovery of novel therapeutic targets, as to mitigate the impact of adiposity on insulin resistance.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Adiposidade , Estudos de Coortes , Humanos , Obesidade/epidemiologia
13.
Environ Sci Pollut Res Int ; 29(34): 52083-52097, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35254616

RESUMO

Autism spectrum disorders (ASD), also known as childhood autism, is a common neurological developmental disorder. Although it is generally believed that genetic factors are a primary cause for ASD development, more and more studies show that an increasing number of ASD diagnoses are related to environmental exposure. Epidemiological studies indicated that perinatal exposure to endocrine disruptors might cause neurodevelopmental disorders in children. Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in many products. To explore the neurodevelopmental effect induced by perinatal exposure to DEHP on rat offspring, and the potential mechanisms, female Wistar rats were exposed to 1, 10, and 100 mg/kg/day DEHP during pregnancy and lactation, while valproic acid (VPA) was used as a positive control. The behavior tests showed that rat pups exposed to VPA and 100 mg/kg/day DEHP were not good as those from the control group in both their socialability and social novelty. Expression of mTOR pathway-related components increased while the number of autophagosomes decreased in the brain tissue of the rat offspring exposed to 100 mg/kg/day DEHP. In addition, perinatal exposure to DEHP at all dosages decreased the level of autophagy proteins LC3II and Beclin1 in the brain tissue of rat pups. Our results indicated that perinatal DEHP exposure would induce ASD-like behavioral changes in rat offspring, which might be mediated by activation of the mTOR signaling pathway, and inhibition of autophagy in the brain.


Assuntos
Transtorno do Espectro Autista , Dietilexilftalato , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Dietilexilftalato/toxicidade , Feminino , Ácidos Ftálicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR
14.
J Clin Endocrinol Metab ; 107(6): 1616-1625, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35184183

RESUMO

CONTEXT: Circulating proteomes may provide intervention targets for type 2 diabetes (T2D). OBJECTIVE: We aimed to identify proteomic biomarkers associated with incident T2D and assess its joint effect with dietary or lifestyle factors on the T2D risk. METHODS: We established 2 nested case-control studies for incident T2D: discovery cohort (median 6.5 years of follow-up, 285 case-control pairs) and validation cohort (median 2.8 years of follow-up, 38 case-control pairs). We integrated untargeted mass spectrometry-based proteomics and interpretable machine learning to identify T2D-related proteomic biomarkers. We constructed a protein risk score (PRS) with the identified proteomic biomarkers and used a generalized estimating equation to evaluate PRS-T2D relationship with repeated profiled proteome. We evaluated association of PRS with trajectory of glycemic traits in another non-T2D cohort (n = 376). Multiplicative interactions of dietary or lifestyle factors with PRS were evaluated using logistic regression. RESULTS: Seven proteins (SHBG, CAND1, APOF, SELL, MIA3, CFH, IGHV1-2) were retained as the proteomic biomarkers for incident T2D. PRS (per SD change) was positively associated with incident T2D across 2 cohorts, with an odds ratio 1.29 (95% CI, 1.08-1.54) and 1.84 (1.19-2.84), respectively. Participants with a higher PRS had a higher probability showing unfavored glycemic trait trajectory in the non-T2D cohort. Red meat intake and PRS showed a multiplicative interaction on T2D risk in the discovery (P = 0.003) and validation cohort (P = 0.017). CONCLUSION: This study identified proteomic biomarkers for incident T2D among the Chinese populations. The higher intake of red meat may synergistically interact with the proteomic biomarkers to exaggerate the T2D risk.


Assuntos
Diabetes Mellitus Tipo 2 , Biomarcadores , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Humanos , Estudos Prospectivos , Proteoma , Proteômica , Fatores de Risco
15.
Adv Sci (Weinh) ; 9(11): e2104965, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142450

RESUMO

The antibiotic resistance crisis underlies globally increasing failures in treating deadly bacterial infections, largely due to the selection of antibiotic resistance genes (ARG) collection, known as the resistome, in human gut microbiota. So far, little is known about the relationship between gut antibiotic resistome and host metabolic disorders such as type 2 diabetes (T2D). Here, metagenomic landscape of gut antibiotic resistome is profiled in a large multiomics human cohort (n = 1210). There is a significant overall shift in gut antibiotic resistome structure among healthy, prediabetes, and T2D groups. It is found that larger ARG diversity is associated with a higher risk of T2D. The novel diabetes ARG score is positively associated with glycemic traits. Longitudinal validation analysis confirms that the ARG score is associated with T2D progression, characterized by the change of insulin resistance. Collectively, the data describe the profiles of gut antibiotic resistome and support its close relationship with T2D progression.


Assuntos
Antibacterianos , Diabetes Mellitus Tipo 2 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fezes/microbiologia , Humanos , Metagenômica
16.
Gut ; 71(9): 1812-1820, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35017200

RESUMO

OBJECTIVE: The human gut fungal community, known as the mycobiome, plays a fundamental role in the gut ecosystem and health. Here we aimed to investigate the determinants and long-term stability of gut mycobiome among middle-aged and elderly adults. We further explored the interplay between gut fungi and bacteria on metabolic health. DESIGN: The present study included 1244 participants from the Guangzhou Nutrition and Health Study. We characterised the long-term stability and determinants of the human gut mycobiome, especially long-term habitual dietary consumption. The comprehensive multiomics analyses were performed to investigate the ecological links between gut bacteria, fungi and faecal metabolome. Finally, we examined whether the interaction between gut bacteria and fungi could modulate the metabolic risk. RESULTS: The gut fungal composition was temporally stable and mainly determined by age, long-term habitual diet and host physiological states. Specifically, compared with middle-aged individuals, Blastobotrys and Agaricomycetes spp were depleted, while Malassezia was enriched in the elderly. Dairy consumption was positively associated with Saccharomyces but inversely associated with Candida. Notably, Saccharomycetales spp interacted with gut bacterial diversity to influence insulin resistance. Bidirectional mediation analyses indicated that bacterial function or faecal histidine might causally mediate an impact of Pichia on blood cholesterol. CONCLUSION: We depict the sociodemographic and dietary determinants of human gut mycobiome in middle-aged and elderly individuals, and further reveal that the gut mycobiome may be closely associated with the host metabolic health through regulating gut bacterial functions and metabolites.


Assuntos
Microbioma Gastrointestinal , Micobioma , Adulto , Idoso , Bactérias , Ecossistema , Fezes/microbiologia , Fungos , Humanos , Pessoa de Meia-Idade , Micobioma/fisiologia
17.
J Genet Genomics ; 48(9): 792-802, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257044

RESUMO

Gut microbial dysbiosis has been linked to many noncommunicable diseases. However, little is known about specific gut microbiota composition and its correlated metabolites associated with molecular signatures underlying host response to infection. Here, we describe the construction of a proteomic risk score based on 20 blood proteomic biomarkers, which have recently been identified as molecular signatures predicting the progression of the COVID-19. We demonstrate that in our cohort of 990 healthy individuals without infection, this proteomic risk score is positively associated with proinflammatory cytokines mainly among older, but not younger, individuals. We further discover that a core set of gut microbiota can accurately predict the above proteomic biomarkers among 301 individuals using a machine learning model and that these gut microbiota features are highly correlated with proinflammatory cytokines in another independent set of 366 individuals. Fecal metabolomics analysis suggests potential amino acid-related pathways linking gut microbiota to host metabolism and inflammation. Overall, our multi-omics analyses suggest that gut microbiota composition and function are closely related to inflammation and molecular signatures of host response to infection among healthy individuals. These results may provide novel insights into the cross-talk between gut microbiota and host immune system.


Assuntos
Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , COVID-19/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Inflamação/genética , Proteômica/métodos
18.
EBioMedicine ; 66: 103284, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33752125

RESUMO

BACKGROUND: Little is known about the interplay among dairy intake, gut microbiota and cardiometabolic health in human prospective cohort studies. METHODS: The present study included 1780 participants from the Guangzhou Nutrition and Health Study. We examined the prospective association between habitual dairy consumption (total dairy, milk, yogurt) and gut microbial composition using linear regression after adjusting for socio-demographic, lifestyle and dietary factors. The cross-sectional association of dairy-associated microbial features with cardiometabolic risk factors was examined with a linear regression model, adjusting for potential confounders. Serum metabolomic profiles were analyzed by partial correlation analysis. FINDINGS: There was a significant overall difference in gut microbial community structure (ß-diversity) comparing the highest with the lowest category for each of total dairy, milk and yogurt (P < 0.05). We observed that dairy-associated microbes and α-diversity indices were inversely associated with blood triglycerides, while positively associated with high-density lipoprotein cholesterol. A follow-up metabolomics analysis revealed the association of targeted serum metabolites with dairy-microbial features and cardiometabolic traits. Specifically, 2-hydroxy-3-methylbutyric acid, 2-hydroxybutyric acid and L-alanine were inversely associated with dairy-microbial score, while positively associated with triglycerides (FDR-corrected P < 0.1). INTERPRETATION: Dairy consumption is associated with the gut microbial composition and a higher α-diversity, which provides new insights into the understanding of dairy-gut microbiota interactions and their relationship with cardiometabolic health. FUNDING: This work was supported by the National Natural Science Foundation of China, Zhejiang Ten-thousand Talents Program, Westlake University and the 5010 Program for Clinical Researches of the Sun Yat-sen University.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Laticínios , Microbioma Gastrointestinal , Metabolômica , Proteômica , Idoso , Biodiversidade , Biomarcadores/sangue , Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Proteômica/métodos , Vigilância em Saúde Pública , Medição de Risco , Fatores de Risco
19.
BMC Med ; 18(1): 371, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33267887

RESUMO

BACKGROUND: Little is known about the inter-relationship among fruit and vegetable intake, gut microbiota and metabolites, and type 2 diabetes (T2D) in human prospective cohort study. The aim of the present study was to investigate the prospective association of fruit and vegetable intake with human gut microbiota and to examine the relationship between fruit and vegetable-related gut microbiota and their related metabolites with type 2 diabetes (T2D) risk. METHODS: This study included 1879 middle-age elderly Chinese adults from Guangzhou Nutrition and Health Study (GNHS). Baseline dietary information was collected using a validated food frequency questionnaire (2008-2013). Fecal samples were collected at follow-up (2015-2019) and analyzed for 16S rRNA sequencing and targeted fecal metabolomics. Blood samples were collected and analyzed for glucose, insulin, and glycated hemoglobin. We used multivariable linear regression and logistic regression models to investigate the prospective associations of fruit and vegetable intake with gut microbiota and the association of the identified gut microbiota (fruit/vegetable-microbiota index) and their related fecal metabolites with T2D risk, respectively. Replications were performed in an independent cohort involving 6626 participants. RESULTS: In the GNHS, dietary fruit intake, but not vegetable, was prospectively associated with gut microbiota diversity and composition. The fruit-microbiota index (FMI, created from 31 identified microbial features) was positively associated with fruit intake (p < 0.001) and inversely associated with T2D risk (odds ratio (OR) 0.83, 95%CI 0.71-0.97). The FMI-fruit association (p = 0.003) and the FMI-T2D association (OR 0.90, 95%CI 0.84-0.97) were both successfully replicated in the independent cohort. The FMI-positive associated metabolite sebacic acid was inversely associated with T2D risk (OR 0.67, 95%CI 0.51-0.86). The FMI-negative associated metabolites cholic acid (OR 1.35, 95%CI 1.13-1.62), 3-dehydrocholic acid (OR 1.30, 95%CI 1.09-1.54), oleylcarnitine (OR 1.77, 95%CI 1.45-2.20), linoleylcarnitine (OR 1.66, 95%CI 1.37-2.05), palmitoylcarnitine (OR 1.62, 95%CI 1.33-2.02), and 2-hydroglutaric acid (OR 1.47, 95%CI 1.25-1.72) were positively associated with T2D risk. CONCLUSIONS: Higher fruit intake-associated gut microbiota and metabolic alteration were associated with a lower risk of T2D, supporting the public dietary recommendation of adopting high fruit intake for the T2D prevention.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Frutas/química , Microbioma Gastrointestinal/fisiologia , Verduras/química , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
20.
Microbiome ; 8(1): 145, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032658

RESUMO

BACKGROUND: Interest in the interplay between host genetics and the gut microbiome in complex human diseases is increasing, with prior evidence mainly being derived from animal models. In addition, the shared and distinct microbiome features among complex human diseases remain largely unclear. RESULTS: This analysis was based on a Chinese population with 1475 participants. We estimated the SNP-based heritability, which suggested that Desulfovibrionaceae and Odoribacter had significant heritability estimates (0.456 and 0.476, respectively). We performed a microbiome genome-wide association study to identify host genetic variants associated with the gut microbiome. We then conducted bidirectional Mendelian randomization analyses to examine the potential causal associations between the gut microbiome and complex human diseases. We found that Saccharibacteria could potentially decrease the concentration of serum creatinine and increase the estimated glomerular filtration rate. On the other hand, atrial fibrillation, chronic kidney disease and prostate cancer, as predicted by host genetics, had potential causal effects on the abundance of some specific gut microbiota. For example, atrial fibrillation increased the abundance of Burkholderiales and Alcaligenaceae and decreased the abundance of Lachnobacterium, Bacteroides coprophilus, Barnesiellaceae, an undefined genus in the family Veillonellaceae and Mitsuokella. Further disease-microbiome feature analysis suggested that systemic lupus erythematosus and chronic myeloid leukaemia shared common gut microbiome features. CONCLUSIONS: These results suggest that different complex human diseases share common and distinct gut microbiome features, which may help reshape our understanding of disease aetiology in humans. Video Abstract.


Assuntos
Doença/genética , Microbioma Gastrointestinal/genética , Adulto , Idoso , Animais , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/microbiologia , Lúpus Eritematoso Sistêmico/microbiologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA