Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Environ Pollut ; 356: 124240, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810672

RESUMO

Addressing the mounting environmental challenge of non-degradable polymeric waste, the world grapples with escalating production driven by population growth, modernization, and industrialization. Pyrolysis has emerged as a promising and strategic solution for transforming non-degradable polymeric waste into valuable fuels and other chemical products. This study detailed the high-quality oil recovery from microwave co-pyrolysis of polystyrene (PS) and polypropylene (PP) mixtures. The effects of PS/PP ratio (30:0, 10:20, 15:15, 20:10, and 30:0 g), microwave power (400, 500, 600, 700, and 800 W), and pyrolysis temperature (450, 500, 550, 600, and 650 °C) on oil yield and components were studied, and the synergistic effect, higher heating value (HHV) and thermal efficiency were also detailed. The results revealed that the highest oil yield was 93.84 wt% when PS/PP ratio, microwave power, and pyrolysis temperature were adjusted at 20:10 g, 600 W, and 550 °C, respectively. And the maximum higher heating value and thermal efficiency were 45.67 MJ/kg and 56.53%, respectively. The contents of aromatic hydrocarbons, cyclic hydrocarbons, and oxygenated hydrocarbons varied in the ranges of 1.92-58.88 area%, 10.47-41.76 area%, and 5.06-24.36 area%, respectively. The contents of the major carbon numbers were C8 and C9, and they varied in 2.51-43.66 area% and 7.31-20.09 area%, respectively. The results presented in this study showed that high-quality oil can be recovered from polystyrene and polypropylene plastics by using microwave irradiation, contributing to cleaner ways for plastics recycling.

2.
Clin Nucl Med ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38620003

RESUMO

ABSTRACT: We report 18F-FDG PET/CT appearances of intracholecystic papillary neoplasm (ICPN) in the gallbladder neck and duct of a 74-year-old woman with a history of hepatitis B cirrhosis. The lesion presented with a large and sessile soft mass in the neck and duct of gallbladder with obvious glucose metabolism on PET/CT images, which was confirmed pathologically as ICPN (gastric foveolar type) with high-grade intraepithelial neoplasia. ICPN localized in the gallbladder neck and duct is extremely rare, and is easily misdiagnosed as gallbladder carcinoma. Our report aids in the application of PET/CT in the differential diagnosis of ICPN and guiding early surgery.

3.
Angew Chem Int Ed Engl ; 63(24): e202403661, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613727

RESUMO

The development of highly producible and interfacial compatible in situ polymerized electrolytes for solid-state lithium metal batteries (SSLMBs) have been plagued by insufficient transport kinetics and uncontrollable dendrite propagation. Herein, we seek to explore a rationally designed nanofiber architecture to balance all the criteria of SSLMBs, in which La0.6Sr0.4CoO3-δ (LSC) enriched with high valence-state Co species and oxygen vacancies is developed as electronically conductive nanofillers embedded within ZnO/Zn3N2-functionalized polyimide (Zn-PI) nanofiber framework for the first time, to establish Li+ transport highways for poly vinylene carbonate (PVC) electrolyte and eliminate nonuniform Li deposits. Revealed by characterization and theoretical calculation under electric field, the positive-negative electrical dipole layer in LSC derived from electron migration between Co and O atoms aids in accelerating Li+ diffusion kinetics through densified electric field around filler particle, featuring a remarkable ionic conductivity of 1.50 mS cm-1 at 25 °C and a high Li+ transference number of 0.91 without the risk of electron leakage. Integrating with the preferential sacrifice of ZnO/Zn3N2 on PI nanofiber upon immediate detection of dendritic Li, which takes part in reconfiguring hierarchical SEI chemistry dominated by LixNy/Li-Zn alloy inner layer and LiF outer layer, SSLMBs are further endowed with prolonged cycling lifespan and exceptional rate capability.

4.
J Colloid Interface Sci ; 657: 363-372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043238

RESUMO

Electrochemical CO2 reduction (eCO2R) to industrially important feedstock has received great attention, but it faces different challenges. Among them, the poor CO2 mass transport due to low intrinsic CO2 solubility significantly limits the rate of reduction reactions, leading to lower catalytic performance; thereby, commercially relevant current densities can't be achieved. Moreover, the poor activity and selectivity of high-cost monometallic catalysts, including Cu, Zn, Ag, and Au, undermine the efficiency of eCO2R. Flow-through gas diffusion electrodes (FTGDE), a newly developed class of GDEs, can potentially solve the issue of poor CO2 mass transport because they directly feed the CO2 to the catalyst layer. In addition, abundant surface area, porous structure, and improved triple-phase interface make them an excellent candidate for extremely high rate eCO2R. Antimony, a low-cost and abundant metalloid, can be effectively tuned with Cu to produce useful products such as CO, formate, and C2H4 through eCO2R. Herein, a series of porous binary CuSb FTGDEs with different Sb compositions are fabricated for the electrocatalytic reduction of CO2 to CO. The results show that the catalytic performance of CuSb FTGDEs improved with increasing Sb content up to a certain threshold, beyond which it started to decrease. The CuSb FTGDE with 5.4 g of antimony demonstrated higher current density (206.4 mA/cm2) and faradaic efficiency (72.82 %) at relatively lower overpotentials. Compared to gas diffusion configuration, the poor catalytic activity and selectivity achieved by CuSb FTGDE in non-gas diffusion configuration signifies the importance of improved local CO2 concentration and improved triple-phase interface formation in GDE configuration. The several hours stable operation of CuSb FTGDEs during eCO2R demonstrates its potential for efficient electrocatalytic conversion applications.

5.
Small ; : e2307942, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054774

RESUMO

Employing nanofiber framework for in situ polymerized solid-state lithium metal batteries (SSLMBs) is impeded by the insufficient Li+ transport properties and severe dendritic Li growth. Both critical issues originate from the shortage of Li+ conduction highways and nonuniform Li+ flux, as randomly-scattered nanofiber backbone is highly prone to slippage during battery assembly. Herein, a robust fabric of Li0.33 La0.56 Ce0.06 Ti0.94 O3-δ /polyacrylonitrile framework (p-LLCTO/PAN) with inbuilt Li+ transport channels and high interfacial Li+ flux is reported to manipulate the critical current density of SSLMBs. Upon the merits of defective LLCTO fillers, TFSI- confinement and linear alignment of Li+ conduction pathways are realized inside 1D p-LLCTO/PAN tunnels, enabling remarkable ionic conductivity of 1.21 mS cm-1 (26 °C) and tLi+ of 0.93 for in situ polymerized polyvinylene carbonate (PVC) electrolyte. Specifically, molecular reinforcement protocol on PAN framework further rearranges the Li+ highway distribution on Li metal and alters Li dendrite nucleation pattern, boosting a homogeneous Li deposition behavior with favorable SEI interface chemistry. Accordingly, excellent capacity retention of 76.7% over 1000 cycles at 2 C for Li||LiFePO4 battery and 76.2% over 500 cycles at 1 C for Li||LiNi0.5 Co0.2 Mn0.3 O2 battery are delivered by p-LLCTO/PAN/PVC electrolyte, presenting feasible route in overcoming the bottleneck of dendrite penetration in in situ polymerized SSLMBs.

6.
Opt Lett ; 48(16): 4388-4391, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582039

RESUMO

In3SbTe2 (IST), a new non-volatile phase-change material (PCM), promises highly tunable infrared optical properties and offers a distinct path to the significant modulation of its optical scattering fingerprint, suggesting tremendous applications. In this Letter, we demonstrate and optimize a four-layer emitter based on IST, achieving an ultra-wide average emissivity variation of more than 94% in the middle-infrared region (MIR, 3-5 µm). This remarkable emissivity difference can be further continuously modified by changing the structural composition in terms of the amorphous and crystalline states of the IST layers. Based on this continuous programmable emission, the MIR emission characteristics of marble, maple leaf, and blue polyvinyl chloride are successfully imitated together on a desert background, demonstrating the programmable and multi-level MIR optical camouflage capabilities of IST. This work provides a promising platform for continuously modulating emission characteristics and offers a reference for the subsequent application of programmable optical devices.

7.
Opt Express ; 31(15): 23944-23951, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475234

RESUMO

This study proposes a deep learning architecture for automatic modeling and optimization of multilayer thin film structures to address the need for specific spectral emitters and achieve rapid design of geometric parameters for an ideal spectral response. Multilayer film structures are ideal thermal emitter structures for thermophotovoltaic application systems because they combine the advantages of large area preparation and controllable costs. However, achieving good spectral response performance requires stacking more layers, which makes it more difficult to achieve fine spectral inverse design using forward calculation of the dimensional parameters of each layer of the structure. Deep learning is the main method for solving complex data-driven problems in artificial intelligence and provides an efficient solution for the inverse design of structural parameters for a target waveband. In this study, an eight-layer thin film structure composed of SiO2/Ti and SiO2/W is rapidly reverse engineered using a deep learning method to achieve a structural design with an emissivity better than 0.8 in the near-infrared band. Additionally, an eight-layer thin film structure composed of 3 × 3 cm SiO2/Ti is experimentally measured using magnetron sputtering, and the emissivity in the 1-4 µm band was better than 0.68. This research provides implications for the design and application of micro-nano structures, can be widely used in the fields of thermal imaging and thermal regulation, and will contribute to developing a new paradigm for optical nanophotonic structures with a fast target-oriented inverse design of structural parameters, such as required spectral emissivity, phase, and polarization.

8.
ACS Appl Mater Interfaces ; 15(6): 8181-8189, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720174

RESUMO

Water treatment consumes lots of energy from fossil fuels nowadays, and the emission of CO2 enhances the temperature on earth, resulting in more and more hazards. Thus, clean water production enabled by green energy without CO2 emission is attracting more and more attention. Herein, we propose a novel solar evaporation system achieving both solar evaporation and water storage with two different unique hydrogels based on a three-dimensional (3D) printing technique. The hydrogel absorber demonstrates an ultrahigh absorptance (98.2%) of solar light, while the water-storage hydrogel absorbs more than 100 times its own weight of water, demonstrating super water-storage performance with strong self-adhesiveness. The solar vapor generation rate can be as high as 3.14 kg·m-2·h-1, with a solar evaporation efficiency up to 91.2% irradiated by 1.43 sun. Furthermore, our environmentally friendly solar evaporation system achieves ultrahigh water purification efficiency of 99.99% for salt, heavy ions, and acid/alkaline with remarkable stability and durability. Our solar evaporation system promises long-lasting applications for the hydrological cycle enabled by solar energy, such as seawater desalination, sterilization, wastewater purification, and so on.

9.
ACS Appl Mater Interfaces ; 14(50): 55839-55849, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36511344

RESUMO

Near-infrared (NIR) synaptic devices integrate NIR optical sensitivity and synaptic plasticity, emulating the basic biomimetic function of the human visual system and showing great potential in NIR artificial vision systems. However, the lack of semiconductor materials with appropriate band gaps for NIR photodetection and effective strategies for fabricating devices with synaptic behaviors limit the further development of NIR synaptic devices. Here, a two-terminal NIR synaptic device consisting of the In2Se3/MoS2 heterojunction has been constructed, and it exhibits fundamental synaptic functions. The reduced band gap and potential barrier of In2Se3/MoS2 heterojunctions are essential for NIR synaptic plasticity. In addition, the NIR synaptic properties of In2Se3/MoS2 heterojunctions under strain have been studied systematically. The ΔEPSC of the In2Se3/MoS2 synaptic device can be improved from 38.4% under no strain to 49.0% under a 0.54% strain with a 1060 nm illumination for 1 s at 100 mV. Furthermore, the artificial NIR vision system consisting of a 10 × 10 In2Se3/MoS2 device array has been fabricated, exhibiting image sensing, learning, and storage functions under NIR illumination. This research provides new ideas for the design of flexible NIR synaptic devices based on 2D materials and presents many opportunities in artificial intelligence and NIR vision systems.


Assuntos
Inteligência Artificial , Molibdênio , Humanos , Biomimética , Aprendizagem , Sinapses
10.
Appl Opt ; 61(15): 4270-4277, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256263

RESUMO

Hot electron detectors (HEDs) based on plasmon resonance can circumvent a semiconductor's bandgap limitation and have high sensitivity, suitable for infrared gas detectors. Unfortunately, there are few literature reports on research in the mid-infrared (MIR) region. Herein, we design and optimize a HED based on Al/GaAs fishnet nanostructure for MIR CO2 sensing, and its optical-electrical properties are numerically studied. Surface plasmons not only achieve strong absorptance at CO2 emission wavelength but also greatly improve the photoelectric responsivity over a plane structure detector (∼42times). By changing the thickness of the GaAs layer, the detection wavelength can also be actively adjusted, achieving a larger range of multi-gas detection. The effect of external voltage is also considered. This work highlights a potential engineering application value and offers a path toward more compact and efficient MIR gas detectors.

11.
J Colloid Interface Sci ; 627: 516-531, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35870404

RESUMO

CO2-splitting and thermochemical energy conversion effectiveness are still challenged by the selectivity of metal/metal oxide-based redox materials and associated chemical reaction constraints. This study proposed an interface/substrate engineering approach for improving CO2-splitting and thermochemical energy conversion through CuFe2O4 and Co3O4 two-layer coating SiC. The newly prepared material reactive surface area available for gas-solid reactions is characterized by micro-pores CuFe2O4 alloy easing inter-layer oxygen micro mass exchanges across a highly stable SiC-Co3O4 layer. Through a thermogravimetry analysis, oxidation of the thermally activated oxygen carriers exhibited remarkably CO2-splitting capacities with a total CO yield of 1919.33 µmol/g at 1300 °C. The further analysis of the material CO2-splitting performance at the reactor scale resulted in 919.04 mL (788.94 µmol/g) of CO yield with an instantaneous CO production rate of 22.52 mL/min and chemical energy density of 223.37 kJ/kg at 1000 °C isothermal redox cycles. The reaction kinetic behavior indicated activation energy of 30.65 kJ/mol, which suggested faster CO2 activation and oxidation kinetic on SiC-Co3O4-CuFe2O4 O-deficit surfaces. The underlying mechanism for the remarkable thermochemical performances was analyzed by combining experiment and density functional theory (DFT) calculations. The significance of exploiting the synergy between CuFe2O4 and Co3O4 layers and stoichiometric reaction characteristics provided fundamental insights useful for the theoretical modeling and practical application of the solar thermochemical process.

12.
Emerg Infect Dis ; 28(7): 1489-1493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680129

RESUMO

During 2018-2020, we isolated 32 Eurasian avian-like swine influenza A(H1N1) viruses and their reassortant viruses from pigs in China. Genomic testing identified a novel reassortant H3N1 virus, which emerged in late 2020. Derived from G4 Eurasian H1N1 and H3N2 swine influenza viruses. This virus poses a risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Aves , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Vírus Reordenados/genética , Suínos , Doenças dos Suínos/epidemiologia
13.
BMC Plant Biol ; 22(1): 243, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585490

RESUMO

BACKGROUND: Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li, whose leaves produce essential oils, is a traditional Chinese medicine and economically important tree species. In our study, two C. longepaniculatum varieties that have significantly different essential oil contents and leaf phenotypes were selected as the materials to investigate secondary metabolism. RESULT: The essential oil content and leaf phenotypes were different between the two varieties. When the results of both transcriptome and metabolomic analyses were combined, it was found that the differences were related to phenylalanine metabolic pathways, particularly the metabolism of flavonoids and terpenoids. The transcriptome results based on KEGG pathway enrichment analysis showed that pathways involving phenylpropanoids, tryptophan biosynthesis and terpenoids significantly differed between the two varieties; 11 DEGs (2 upregulated and 9 downregulated) were associated with the biosynthesis of other secondary metabolites, and 12 DEGs (2 upregulated and 10 downregulated) were related to the metabolism of terpenoids and polyketides. Through further analysis of the leaves, we detected 196 metabolites in C. longepaniculatum. The abundance of 49 (26 downregulated and 23 upregulated) metabolites differed between the two varieties, which is likely related to the differences in the accumulation of these metabolites. We identified 12 flavonoids, 8 terpenoids and 8 alkaloids and identified 4 kinds of PMFs from the leaves of C. longepaniculatum. CONCLUSIONS: The combined results of transcriptome and metabolomic analyses revealed a strong correlation between metabolite contents and gene expression. We speculate that light leads to differences in the secondary metabolism and phenotypes of leaves of different varieties of C. longepaniculatum. This research provides data for secondary metabolite studies and lays a solid foundation for breeding ideal C. longepaniculatum plants.


Assuntos
Cinnamomum , Óleos Voláteis , Cinnamomum/genética , Cinnamomum/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Óleos Voláteis/metabolismo , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Terpenos/metabolismo , Transcriptoma
14.
Nanoscale ; 14(11): 4204-4215, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35234771

RESUMO

Two-dimensional (2D) integrated circuits based on graphene (Gr) heterostructures have emerged as next-generation electronic devices. However, it is still challenging to produce high-quality and large-area Gr/hexagonal boron nitride (h-BN) vertical heterostructures with clear interfaces and precise layer control. In this work, a two-step metallic alloy-assisted epitaxial growth approach has been demonstrated for producing wafer-scale vertical hexagonal boron nitride/graphene (h-BN/Gr) heterostructures with clear interfaces. The heterostructures maintain high uniformity while scaling up and thickening. The layer number of both h-BN and graphene can be independently controlled by tuning the growth process. Furthermore, conductance measurements confirm that electrical hysteresis disappears on h-BN/Gr field-effect transistors, which is attributed to the h-BN dielectric surface. Our work blazes a trail toward next-generation graphene-based analog devices.

15.
Transbound Emerg Dis ; 69(5): e3202-e3207, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35119777

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge economic losses to the swine industry worldwide. Here, a novel variant of PRRSV strain named TJnh2021 was isolated from nursery piglets with morbidity rate (75%) and mortality rate (40%) in Tianjin Province of China in 2021. Phylogenetic and molecular evolutionary analyses revealed that TJnh2021 was highly similar to NADC34-like (lineage 1.5, isolated in North America in 2014) in the ORF1ab-ORF2 and ORF6-ORF7 coding regions, as well as to QYYZ-like (lineage 3, isolated in China in 2010) in the ORF3-ORF5, suggestive of a natural recombination event. Recombination analyses revealed that recombination events occurred in two interlineage recombination events between lineages 1.5 and 3, and two breakpoints in ORF2 (nt12196) and ORF5 (nt13628) (with reference to the VR-2332 strain). Animal experiments demonstrated that TJnh2021 caused mortality rates of 40% and exhibited higher pathogenicity in piglets compared to other lineage 1.5 strains reported in China. Taken altogether, NADC34-like PRRSV has undergone genetic exchange with Chinese local PRRSV strains and recombination might be responsible for the variations in pathogenicity and highlight the importance of surveillance of this lineage in China.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , China/epidemiologia , Variação Genética , Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Suínos , Virulência/genética
16.
Adv Mater ; 33(52): e2104960, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655120

RESUMO

Biomimetic eyes, with their excellent imaging functions such as large fields of view and low aberrations, have shown great potentials in the fields of visual prostheses and robotics. However, high power consumption and difficulties in device integration severely restrict their rapid development. In this study, an artificial synaptic device consisting of a molybdenum disulfide (MoS2 ) film coated with an electron injection enhanced indium (In) layer is proposed to increase the channel conductivity and reduce the power consumption. This artificial synaptic device achieves an ultralow power consumption of 68.9 aJ per spike, which is several hundred times lower than those of the optical artificial synapses reported in literature. Furthermore, the multilayer and polycrystalline MoS2 film shows persistent photoconductivity performance, effectively resulting in short-term plasticity, long-term plasticity, and their transitions between each other. A 5 × 5 In/MoS2 synaptic device array is constructed into a hemispherical electronic retina, demonstrating its impressive image sensing and learning functions. This research provides a new methodology for effective control of artificial synaptic devices, which have great opportunities used in bionic retinas, robots, and visual prostheses.

17.
RSC Adv ; 11(25): 15167-15176, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424022

RESUMO

Adopting ab initio density functional theory (DFT) technique, the spintronic and opto-electronic characteristics of MnO x (i.e., Mn, MnO, MnO2, MnO3 and MnO4) clusters intercalated bilayer AlN (BL/AlN) systems are investigated in this paper. In terms of electron transfer, charge transfer occurs from BL/AlN to the MnO x clusters. MnO x clusters intercalation induces magnetic behavior in the non-magnetic AlN system. The splitting of electronic bands occurs, thus producing spintronic trends in the electronic structure of BL/AlN system. Further, MnO x intercalation converts insulating BL/AlN to a half metal/semiconductor material during spin up/down bands depending upon the type of impurity cluster present in its lattice. For instance, Mn, MnO and MnO2 intercalation in BL/AlN produces a half metallic BL/AlN system as surface states are available at the Fermi Energy (E F) level for spin up and down band channels, accordingly. Whereas, MnO3 and MnO4 intercalation produces a conducting BL/AlN system having a 0.5 eV and 0.6 eV band gap during the spin down band channel, respectively. During spin up band channels these systems behave as semiconductors with band gaps of 1.4 eV and 1.2 eV, respectively. In terms of optical characteristics (i.e., absorption coefficient, reflectivity and energy loss spectrum (ELS)), it was found that MnO x intercalation improves the absorption spectrum in the low electron energy range and absorption peaks are observed in the 0-3 eV energy range, which are not present in the absorption spectrum of pure BL/AlN. The static reflectivity parameter of BL/AlN is increased after MnO x intercalation and the ELS parameter obtains significant peak intensities in the 0-2 eV energy range, whereas for pure BL/AlN, ELS contains negligible value in this energy range. Outcomes of this study indicate that, MnO x clusters intercalation in BL/AlN is a suitable technique to tailor its spintronic and opto-electronic trends. Thus, experimental investigation can be carried out on the systems discussed in this work, so as to fabricate practical layered AlN systems that are functional in the field of nano-technology.

18.
Vet Microbiol ; 251: 108916, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33197868

RESUMO

PA-X is a fusion protein encoded by a +1 frameshifted open reading frame (X-ORF) in PA gene. The X-ORF can be translated in full-length (61 amino acids, aa) or truncated (41 aa) form. However, the role of C-Terminal 20 aa of PA-X in virus function has not yet been fully elucidated. To this end, we constructed the contemporary influenza viruses with full and truncated PA-X by reverse genetics to compare their replication and pathogenicity. The full-length PA-X virus in MDCK and human A549 cells conferred 10- to 100-fold increase in viral replication, and more virulent and caused more severe inflammatory responses in mice relative to corresponding truncated PA-X virus, suggesting that the terminal 20 aa could play a role in enhancing viral replication and contribute to virulence.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/virologia , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Células A549 , Animais , Linhagem Celular , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Rim/citologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/metabolismo , Suínos , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/metabolismo , Virulência
19.
PeerJ ; 8: e9735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944419

RESUMO

Novel porcine circovirus type 3 (PCV3), first identified in the United States, has been detected in many other countries. Porcine circovirus is associated with postweaning multisystemic wasting syndrome, reproductive failure, congenital tremors, and other clinical symptoms. In this study, we established a double polymerase chain reaction assay for detecting both porcine circovirus type 2 (PCV2) and PCV3. This is the first study to detect and characterize the PCV3 genome in the Tianjin region of North China. We collected a total of 169 tissue samples from seven farms between 2016 and 2018. The PCV3-positive rate of all tissue samples was 37.3% (63/169) and the rate of PCV2 and PCV3 coinfection was 14.8% (25/169). PCV2 and PCV3 coinfections with more serious clinical symptoms were found in only three farms. We sequenced three PCV3 strains selected from tissue samples that were positively identified. The complete genome sequences of the three strains shared 97.6-99.4% nucleotide identities with the PCV3 strains in GenBank. Our results showed the extent of PCV3's spread in Tianjin, and the need to further study PCV3's pathobiology, epidemiology, isolation, and coinfection.

20.
Vet Microbiol ; 246: 108724, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32605742

RESUMO

The classical swine (CS) H1N1 swine influenza virus (SIVs) emerged in humans as a reassortant virus that caused the H1N1 influenza virus pandemic in 2009, and the European avian-like (EA) H1N1 SIVs has caused several human infections in European and Asian countries. Development of the influenza vaccines that could provide effective protective efficacy against SIVs remains a challenge. In this study, the bivalent reassortant inactivated vaccine comprised of SH1/PR8 and G11/PR8 arboring the hemagglutinin (HA) and neuraminidase (NA) genes from prevalent CS and EA H1N1 SIVs and six internal genes from the A/Puerto Rico/8/34(PR8) virus was developed. The protective efficacy of this bivalent vaccine was evaluated in mice challenged with the lethal doses of CS and EA H1N1 SIVs. The result showed that univalent inactivated vaccine elicited high-level antibody against homologous H1N1 viruses while cross-reactive antibody responses to heterologous H1N1 viruses were not fully effective. In a mouse model, the bivalent inactivated vaccine conferred complete protection against lethal challenge doses of EA SH1 virus or CS G11 virus, whereas the univalent inactivated vaccine only produced insufficient protection against heterologous SIVs. In conclusion, our data demonstrated that the reassortant bivalent inactivated vaccine comprised of SH1/PR8 and G11/PR8 could provide effective protection against the prevalent EA and CS H1N1 subtype SIVs in mice.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vírus Reordenados/imunologia , Animais , Reações Cruzadas/imunologia , Feminino , Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Genética Reversa , Organismos Livres de Patógenos Específicos , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA