Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 78(5): 1991-2002, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28019017

RESUMO

PURPOSE: Magnetic resonance imaging (MRI)-based cell tracking has emerged as a useful tool for identifying the location of transplanted cells, and even their migration. Magnetically labeled cells appear as dark contrast in T2*-weighted MRI, with sensitivities of individual cells. One key hurdle to the widespread use of MRI-based cell tracking is the inability to determine the number of transplanted cells based on this contrast feature. In the case of single cell detection, manual enumeration of spots in three-dimensional (3D) MRI in principle is possible; however, it is a tedious and time-consuming task that is prone to subjectivity and inaccuracy on a large scale. This research presents the first comprehensive study on how a computer-based intelligent, automatic, and accurate cell quantification approach can be designed for spot detection in MRI scans. METHODS: Magnetically labeled mesenchymal stem cells (MSCs) were transplanted into rats using an intracardiac injection, accomplishing single cell seeding in the brain. T2*-weighted MRI of these rat brains were performed where labeled MSCs appeared as spots. Using machine learning and computer vision paradigms, approaches were designed to systematically explore the possibility of automatic detection of these spots in MRI. Experiments were validated against known in vitro scenarios. RESULTS: Using the proposed deep convolutional neural network (CNN) architecture, an in vivo accuracy up to 97.3% and in vitro accuracy of up to 99.8% was achieved for automated spot detection in MRI data. CONCLUSION: The proposed approach for automatic quantification of MRI-based cell tracking will facilitate the use of MRI in large-scale cell therapy studies. Magn Reson Med 78:1991-2002, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Rastreamento de Células/métodos , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Algoritmos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Ratos
2.
Behav Processes ; 128: 1-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27038859

RESUMO

Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in primates it directly facilitates sleep and decreases body temperature. However, the role of the pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal mammalian species. Here, the authors directly examined the hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and that this could occur via effects on circadian mechanisms or masking, or both. Removing the pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity were also not significantly different in pinealectomized and control grass rats, as 1h pulses of light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In addition, the circadian regulation of activity was unaffected by the surgical condition of the animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, thus highlighting the complexity of temporal niche transitions. The current data raise interesting questions about how and why genetic and neural mechanisms linking melatonin to sleep regulatory systems might vary among mammals that reached a diurnal niche via parallel and independent pathways.


Assuntos
Ritmo Circadiano/fisiologia , Muridae/fisiologia , Glândula Pineal/fisiologia , Sono/fisiologia , Animais , Feminino , Luz , Atividade Motora/fisiologia , Fotoperíodo , Glândula Pineal/cirurgia
3.
J Biol Rhythms ; 31(2): 170-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801650

RESUMO

The ventral subparaventricular zone (vSPVZ) receives direct retinal input and influences the daily patterning of activity in rodents, making it a likely candidate for the mediation of acute behavioral responses to light (i.e., masking). We performed chemical lesions aimed at the vSPVZ of diurnal grass rats (Arvicanthis niloticus) using N-methyl-D,L-aspartic acid (NMA), a glutamate agonist. Following NMA lesions, we placed grass rats in various lighting conditions (e.g., 12:12 light-dark, constant dark, constant light); presented a series of light pulses at circadian times (CT) 6, 14, 18, and 22; and placed them in a 7-h ultradian cycle to assess behavioral masking. Extensive bilateral lesions of the vSPVZ disrupted the expression of circadian rhythms of activity and abolished the circadian modulation of masking responses to light, without affecting light-induced masking behavior per se. We also found that in diurnal grass rats, NMA was capable of destroying not only neurons of the vSPVZ but also those of the suprachiasmatic nucleus (SCN), even though excitotoxins have been ineffective at destroying cells within the SCN of nocturnal rodents. The vulnerability of the grass rat's SCN to NMA toxicity raises the possibility of a difference in density of receptors for glutamate between nocturnal and diurnal species. In cases in which damage extended to the SCN, masking responses to light were present and similar to those displayed by animals with damage restricted to the vSPVZ. Thus, extensive bilateral lesions of the SCN and vSPVZ disrupted the expression of circadian rhythms without affecting acute responses to light in a diurnal species. Our present and previous results suggest that retinorecipient brain areas other than the SCN or vSPVZ, such as the intergeniculate leaflet or olivary pretectal nucleus, may be responsible for the mediation of masking responses to light in the diurnal grass rat.


Assuntos
Encéfalo/fisiologia , Ritmo Circadiano , Luz , Núcleo Supraquiasmático/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos , Ratos , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/patologia
4.
Physiol Behav ; 138: 75-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447482

RESUMO

Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as "masking". The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1h pulse of light presented 2h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.


Assuntos
Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Luz , Atividade Motora/fisiologia , Murinae/fisiologia , Actigrafia , Animais , Feminino , Imuno-Histoquímica , Masculino , Estimulação Luminosa , Fotomicrografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Especificidade da Espécie
5.
Nanoscale ; 6(21): 13104-12, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25248645

RESUMO

Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. µCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.


Assuntos
Bismuto/química , Ácido Láctico/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Ácido Poliglicólico/química , Espectrometria de Fluorescência , Tomografia Computadorizada por Raios X , Animais , Apoptose , Proliferação de Células , Sobrevivência Celular , Galinhas , Meios de Contraste/química , Cumarínicos/química , Lisossomos/metabolismo , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanotecnologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Temperatura , Tiazóis/química , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA