Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 41149-41159, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087521

RESUMO

The ability to manipulate quantum states with robustness is crucial for various quantum applications, including quantum computation, quantum simulation, and quantum precision measurement. While pulsed shortcut techniques have proven effective for controlling bands and orbits in optical lattices, their robustness has not been extensively studied. In this paper, we present an improved shortcut design scheme that retains the advantages of high speed and high fidelity, while ensuring exceptional robustness. We conduct comprehensive experimental verifications to demonstrate the effectiveness of this new robust shortcut and its application in quantum gate design. The proposed scheme is expected to enhance the robustness of optical lattice orbit-based interferometry, quantum gates, and other processes.

2.
Opt Express ; 31(16): 26599-26609, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710517

RESUMO

Ultracold atoms in optical lattices are a flexible and effective platform for quantum precision measurement, and the lifetime of high-band atoms is an essential parameter for the performance of quantum sensors. In this work, we investigate the relationship between the lattice depth and the lifetime of D-band atoms in a triangular optical lattice and show that there is an optimal lattice depth for the maximum lifetime. After loading the Bose-Einstein condensate into D band of optical lattice by shortcut method, we observe the atomic distribution in quasi-momentum space for the different evolution time, and measure the atomic lifetime at D band with different lattice depths. The lifetime is maximized at an optimal lattice depth, where the overlaps between the wave function of D band and other bands (mainly S band) are minimized. Additionally, we discuss the influence of atomic temperature on lifetime. These experimental results are in agreement with our numerical simulations. This work paves the way to improve coherence properties of optical lattices, and contributes to the implications for the development of quantum precision measurement, quantum communication, and quantum computing.

3.
Opt Express ; 27(20): 27786-27796, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684540

RESUMO

Ultracold atoms in periodical-driven optical lattices enable us to investigate novel band structures and explore the topology of the bands. In this work, we investigate the impact of the ramping process of the driving signal and propose a simple but effective method to realize desired asymmetric population in momentum distribution by controlling the initial phase of the driving signal. A quasi-momentum oscillation along the shaking direction in the frame of reference co-moving with the lattice is formed, causing the formation of the mix of ground energy band and first excited band in laboratory frame, within the regime that the driving frequency is far less than the coupling frequency between ground band and higher energy bands. This method avoids the construction of intricate lattices or complex control sequence. With a triangular lattice, we experimentally investigate the influence of the initial phase, frequency, amplitude of the driving signal on the population difference and observe good agreement with our theoretical model. This provides guidance on how to load a driving signal in driven optical lattice experiment and also potentially supplies a useful tool to form a qubit that can be used in quantum computation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA