Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Death Discov ; 10(1): 106, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429272

RESUMO

Pancreatic cancer has a five-year survival rate of only 10%, mostly due to late diagnosis and limited treatment options. In patients with unresectable disease, either FOLFIRINOX, a combination of 5-fluorouracil (5-FU), oxaliplatin and irinotecan, or gemcitabine plus nab-paclitaxel combined with radiation are frontline standard regimens. However, chemo-radiation therapy has shown limited success because patients develop resistance to chemotherapy and/or radiation. In this study, we evaluated the role of pancreatic cancer stem cells (CSC) using OCT4 and SOX2, CSC markers in mouse pancreatic tumor organoids. We treated pancreatic tumor organoids with 4 or 8 Gy of radiation, 10 µM of 5-FU (5-Fluorouracil), and 100 µM 3-Bromopyruvate (3BP), a promising anti-cancer drug, as a single treatment modalities, and in combination with RT. Our results showed significant upregulation of, OCT4, and SOX2 expression in pancreatic tumor organoids treated with 4 and 8 Gy of radiation, and downregulation following 5-FU treatment. The expression of CSC markers with increasing treatment dose exhibited elevated upregulation levels to radiation and downregulation to 5-FU chemotherapy drug. Conversely, when tumor organoids were treated with a combination of 5-FU and radiation, there was a significant inhibition in SOX2 and OCT4 expression, indicating CSC self-renewal inhibition. Noticeably, we also observed that human pancreatic tumor tissues exhibited heterogeneous and aberrant OCT4 and SOX2 expression as compared to normal pancreas, indicating their potential role in pancreatic cancer growth and therapy resistance. In addition, the combination of 5-FU and radiation treatment exhibited significant inhibition of the ß-catenin pathway in pancreatic tumor organoids, resulting in sensitization to treatment and organoid death. In conclusion, our study emphasizes the crucial role of CSCs in therapeutic resistance in PC treatment. We recommend using tumor organoids as a model system to explore the impact of CSCs in PC and identify new therapeutic targets.

2.
Int J Radiat Biol ; 100(2): 256-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37747697

RESUMO

PURPOSE: Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro. MATERIALS AND METHODS: We used live/dead assays to determine the IC50 of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC50 DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively. RESULTS: Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, p < .0001), DU-145 (1.64-fold, p < .05), and TRAMP-C1 (1.13-fold, p < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients. CONCLUSIONS: Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Linhagem Celular Tumoral , Proliferação de Células
3.
Adv Healthc Mater ; 12(31): e2301815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37706285

RESUMO

Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor-associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs. In this study, the simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer (PC) is demonstrated. This allows for comprehensive information about biomarkers and TAM alterations before and after treatment. These multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS), immunohistochemistry (IHC), polarized light microscopy, second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling and associated pathways through bioinformatics analysis.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Camundongos , Animais , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Microscopia de Fluorescência , Biomarcadores , Imagem Multimodal , Análise Espectral Raman
4.
Am J Cancer Res ; 12(11): 4977-4987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504891

RESUMO

Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. The majority of patients with locally advanced pancreatic cancer undergo chemotherapy and/or radiation therapy (RT). However, current treatments are inadequate and novel strategies are desperately required. 3-Bromopyruvate (3-BP) is a promising anticancer drug against pancreatic cancer. It exerts potent anticancer effects by inhibiting hexokinase II enzyme (HK2) of the glycolytic pathway in cancer cells while not affecting the normal cells. 3-BP killed 95% of Panc-2 cells at 15 µM concentration and severely inhibited ATP production by disrupting the interaction between HK2 and mitochondrial Voltage Dependent Anion Channel-1 (VDAC1) protein. Electron microscopy data revealed that 3-BP severely damaged mitochondrial membrane in cancer cells. We further examined therapeutic effect of 3-BP in syngeneic mouse pancreatic cancer model by treating animals with 10, 15 and 20 mg/kg dose. 3-BP at 15 & 20 mg/kg dose level significantly reduced tumor growth by approximately 75-80% in C57BL/6 female mice. Immunohistochemistry data showed complete inhibition of hexokinase II (HK2) and TGFß, in animals treated with 3-BP drug. We also observed enhanced expression of active caspase-3 in tumor tissues exhibited apoptotic death. Flow Cytometry analysis showed significant inhibition in MDSC (CD11b) population in treated tumor which may have allowed infiltration of CD8+ T cells and inhibited tumor growth. Notably, metabolomic data also revealed severe inhibition in glycolysis, NADP, ATP and lactic acid production in cancer cells treated with 40 µM 3-BP. Importantly, we also observed inhibition in lactic acid production responsible for tumor aggression. These results provide new evidence that 3-BP severely inhibit glucose metabolism in cancer cells by blocking hexokinase II, and disrupting mitochondria by suppressing BCL2L1 in pancreatic cancer.

6.
Front Oncol ; 12: 1072774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713532

RESUMO

Background and purpose: Pancreatic cancer (PC) is the fourth leading cause of cancer death in both men and women. The standard of care for patients with locally advanced PC of chemotherapy, stereotactic radiotherapy (RT), or chemo-radiation-therapy has shown highly variable and limited success rates. However, three-dimensional (3D) Pancreatic tumor organoids (PTOs) have shown promise to study tumor response to drugs, and emerging treatments under in vitro conditions. We investigated the potential for using 3D organoids to evaluate the precise radiation and drug dose responses of in vivo PC tumors. Methods: PTOs were created from mouse pancreatic tumor tissues, and their microenvironment was compared to that of in vivo tumors using immunohistochemical and immunofluorescence staining. The organoids and in vivo PC tumors were treated with fractionated X-ray RT, 3-bromopyruvate (3BP) anti-tumor drug, and combination of 3BP + fractionated RT. Results: Pancreatic tumor organoids (PTOs) exhibited a similar fibrotic microenvironment and molecular response (as seen by apoptosis biomarker expression) as in vivo tumors. Untreated tumor organoids and in vivo tumor both exhibited proliferative growth of 6 folds the original size after 10 days, whereas no growth was seen for organoids and in vivo tumors treated with 8 (Gray) Gy of fractionated RT. Tumor organoids showed reduced growth rates of 3.2x and 1.8x when treated with 4 and 6 Gy fractionated RT, respectively. Interestingly, combination of 100 µM of 3BP + 4 Gy of RT showed pronounced growth inhibition as compared to 3-BP alone or 4 Gy of radiation alone. Further, positive identification of SOX2, SOX10 and TGFß indicated presence of cancer stem cells in tumor organoids which might have some role in resistance to therapies in pancreatic cancer. Conclusions: PTOs produced a similar microenvironment and exhibited similar growth characteristics as in vivo tumors following treatment, indicating their potential for predicting in vivo tumor sensitivity and response to RT and combined chemo-RT treatments.

7.
Cancers (Basel) ; 13(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885223

RESUMO

BACKGROUND: Chordoma is a cancer of spinal cord, skull base, and sacral area. Currently, the standard of care to treat chordoma is resection followed by radiation therapy. Since, chordoma is present in the spinal cord and these are very sensitive structures and often complete removal by surgery is not possible. As a result, chordoma has a high chance of recurrence and developing resistance to radiation therapy. In addition, treatment of chordoma by conventional radiation therapy can also damage normal tissues surrounding chordoma. Thus, current therapeutic options to treat chordoma are insufficient and novel therapies are desperately needed to treat locally advanced and metastatic chordoma. (2) Methods: In the present investigation, human chordoma cell lines of sacral origin MUG-Chor1 and U-CH2 were cultured and irradiated with Proton Beam Radiation using the clinical superconducting cyclotron and pencil-beam (active) scanning at Middle and End of the Spread-Out Bragg Peak (SOBP). Proton radiation was given at the following doses: Mug-Chor1 at 0, 1, 2, 4, and 8 Gy and U-CH2 at 0, 4, 8, 12, and 16 Gy. These doses were selected based on a pilot study in our lab and attempted to produce approximate survival fractions in the range of 1, 0.9, 0.5, 0.1, and 0.01, respectively, chosen for linear quadratic model fitting of the dose response. (3) Results: In this study, we investigated relative biological effectiveness (RBE) of proton radiation at the end of Spread Out Bragg Peak assuming that the reference radiation is a proton radiation in the middle of the SOBP. We observed differences in the survival of both Human chordoma cell lines, U-CH2 and MUG-Chor1. The data showed that there was a significantly higher cell death at the end of the Bragg peak as compared to middle of the Bragg peak. Based on the linear quadratic (LQ) fit for cell survival we calculated the RBE between M-SOBP and E-SOBP at 95% CI level and it was observed that RBE was higher than 1 at E-SOBP and caused significantly higher cell killing. Proton field at E-SOBP caused complex DNA damage in comparison to M-EOBP and the genes such as DNA topoisomerase 1, GTSE1, RAD51B were downregulated in E-SOBP treated cells. Thus, we conclude that there seems to be substantial variation in RBE (1.3-1.7) at the E-SOBP compared with the M-SOBP.

8.
PLoS One ; 16(11): e0258951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762666

RESUMO

Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non-small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Caveolina 1/metabolismo , Neoplasias Pulmonares/patologia , Tolerância a Radiação , Células A549 , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Caveolina 1/genética , Reparo do DNA/genética , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Análise em Microsséries , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Mapas de Interação de Proteínas/genética , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Radiat Biol ; 97(12): 1675-1686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495790

RESUMO

PURPOSE: Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control. In this study, we investigated whether PBRT efficacy for chordoma can be enhanced in combination with HT as a radiosensitizer. MATERIAL AND METHODS: Human chordoma cell lines, U-CH2 and Mug-chor1 were treated in vitro with HT followed by PBRT with variable doses. The colony-forming assay was performed, and dose-response was characterized by linear-quadratic model fits. HSP-70 and Brachyury (TBXT) biomarkers for chordoma aggression levels were quantified by western blot analysis. Gene microarray analysis was performed by U133 Arrays. Pathway Analysis was also performed using IPA bioinformatic software. RESULTS: Our findings in both U-CH2 and Mug-Chor1 cell lines demonstrate that hyperthermia followed by PBRT has an enhanced cell killing effect when compared with PBRT-alone (p < .01). Western blot analysis showed HT decreased the expression of Brachyury protein (p < .05), which is considered a biomarker for chordoma tumor aggression. HT with PBRT also exhibited an RT-dose-dependent decrease of Brachyury expression (p < .05). We also observed enhanced HSP-70 expression due to HT, RT, and HT + RT combined in both cell lines. Interestingly, genomic data showed 344 genes expressed by the treatment of HT + RT compared to HT (68 genes) or RT (112 genes) as individual treatment. We also identified activation of death receptor and apoptotic pathway in HT + RT treated cells. CONCLUSION: We found that Hyperthermia (HT) combined with Proton Beam Radiation (PBRT) could significantly increase chordoma cell death by activating the death receptor pathway and apoptosis which has the promise to treat metastatic chordoma.


Assuntos
Cordoma , Hipertermia Induzida , Terapia com Prótons , Radiossensibilizantes , Apoptose , Cordoma/radioterapia , Humanos , Prótons , Receptores de Morte Celular
10.
Radiother Oncol ; 150: 174-180, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565390

RESUMO

OBJECTIVES: Prostate cancer (PCa) treatment with radiation therapy (RT) has an excellent cure rate. However, Radiation-induced Erectile Dysfunction (RiED) is a common and irreversible toxicity impacting quality of life, and there is no FDA approved specific drug for RiED. We previously showed that prostate RT increased RhoA/ROCK signaling in the cavernous nerve (CN) and penile tissues, which may lead to RiED in rats. In this study, we investigated whether RhoA/ROCK pathway inhibition by a specific inhibitor called Hydroxyfasudil (HF) can improve RiED in our well-established rat model. MATERIALS/METHODS: Male Sprague-Dawley rats were randomized to the following groups: sham-RT, HF-only, RT-only, and RT + HF. Rats were either exposed to a single dose of 25 Gy prostate-confined RT or a sham procedure. 10 mg/kg HF or normal saline was injected intraperitoneally. Erectile function was evaluated by intracavernosal pressure (ICP) and mean arterial pressure (MAP) measurements at week 14 post-RT. Cavernous nerve (CN) injury was evaluated by transmission electron microscopy (TEM), and penile tissue fibrosis by Masson trichrome staining (MT). RESULTS: We have found that the HF treatment prior to RT showed significant (p < 0.001) improvement in ICP/MAP ratio, area under the curve, and maximum ICP value, compared to RT-alone rats. Furthermore, RT + HF treated rats exhibited increased CN myelination and decreased axonal atrophy, comparted to RT-only. HF treatment showed significantly decreased penile tissue fibrosis (p < 0.05) compared to RT-alone treated rats. CONCLUSION: Our results provide the first preclinical evidence that targeting RhoA/ROCK pathway by HF may provide a novel therapeutic option for the treatment of RiED.


Assuntos
Disfunção Erétil , Animais , Modelos Animais de Doenças , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Humanos , Masculino , Ereção Peniana , Pênis , Qualidade de Vida , Ratos , Ratos Sprague-Dawley , Proteína rhoA de Ligação ao GTP
11.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326142

RESUMO

BACKGROUND: Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. Unfortunately, only 10-20% of PC patients are candidates for surgery, with the vast majority of patients with locally-advanced disease undergoing chemotherapy and/or radiation therapy (RT). Current treatments are clearly inadequate and novel strategies are crucially required. We investigated a novel tripartite treatment (combination of tumor targeted hyperthermia (HT), radiation therapy (RT), and immunotherapy (IT)) to alter immunosuppressive PC-tumor microenvironment (TME). (2). METHODS: In a syngeneic PC murine tumor model, HT was delivered before tumor-targeted RT, by a small animal radiation research platform (SARRP) followed by intraperitoneal injections of cytotoxic T-cell agonist antibody against OX40 (also known as CD134 or Tumor necrosis factor receptor superfamily member 4; TNFRSF4) that can promote T-effector cell activation and inhibit T-regulatory (T-reg) function. (3). RESULTS: Tripartite treatment demonstrated significant inhibition of tumor growth (p < 0.01) up to 45 days post-treatment with an increased survival rate compared to any monotherapy. Flow cytometric analysis showed a significant increase (p < 0.01) in cytotoxic CD8 and CD4+ T-cells in the TME of the tripartite treatment groups. There was no tripartite-treatment-related toxicity observed in mice. (4). CONCLUSIONS: Tripartite treatment could be a novel therapeutic option for PC patients.

12.
Cancers (Basel) ; 10(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486519

RESUMO

Pancreatic cancer (PC) has the highest mortality rate amongst all other cancers in both men and women, with a one-year relative survival rate of 20%, and a five-year relative survival rate of 8% for all stages of PC combined. The Whipple procedure, or pancreaticoduodenectomy, can increase survival for patients with resectable PC, however, less than 20% of patients are candidates for surgery at time of presentation. Most of the patients are diagnosed with advanced PC, often with regional and distant metastasis. In these advanced cases, chemotherapy and radiation have shown limited tumor control, and PC continues to be refractory to treatment and results in a poor survival outcome. In recent years, there has been intensive research on checkpoint inhibitor immunotherapy for PC, however, PC is characterized with dense stromal tissue and a tumor microenvironment (TME) that is highly immunosuppressive, which makes immunotherapy less effective. Interestingly, when immunotherapy is combined with radiation therapy (RT) and loco-regional hyperthermia (HT), it has demonstrated enhanced tumor responses. HT improves tumor killing via a variety of mechanisms, targeting both the tumor and the TME. Targeted HT raises the temperature of the tumor and surrounding tissues to 42⁻43 °C and makes the tumor more immunoresponsive. HT can also modulate the immune system of the TME by inducing and synthesizing heat shock proteins (HSP), which also activate an anti-tumor response. It is well known that HT can enhance RT-induced DNA damage in cancer cells and simultaneously help to oxygenate hypoxic regions. Thus, it is envisaged that combined HT and RT might have immunomodulatory effects in the PC-TME, making PC more responsive to immunotherapies. Moreover, the combined tripartite approach of immunotherapy, RT, and HT could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the immunotherapeutic effect of overall individual therapies to treat local and metastatic PC. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than monotherapy or dual therapy to treat and increase the survival of the PC patients.

13.
Proteomes ; 5(4)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068423

RESUMO

During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS) data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.

14.
Int J Radiat Biol ; 92(12): 747-753, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27623870

RESUMO

PURPOSE: Caveolin-1 is a membrane protein highly expressed in many tumors and plays an important role in tumor progression and metastasis. This review describes the structure of the Caveolin-1 protein and its pre-clinical and clinical significance, demonstrating that Caveolin-1 is a novel biomarker for radioresistance which has the promising potential to improve the clinical outcome of cancer patients undergoing radiation treatment. SUMMARY: Targeted radiation therapy has shown immense benefits for cancer treatment. However, one of the major challenges for effective clinical outcome of radiation therapy for cancer patients is the development of radioresistance during radiation treatment. As a consequence, radiation therapy becomes a less effective modality for successful clinical outcome. Furthermore, a radioresistant tumor has the ability to repair its genome, and therefore becomes more aggressive and metastasizes. The plausible mechanisms for tumor radioresistance include the rapid DNA repair, somatic mutations in tumor oncogenes, aberrant activation of kinase pathways, and changes in the tumor microenvironment including tumor hypoxia, tumor vasculature, and cancer stem cells. Caveolin-1 is significantly upregulated in certain cancer cells and aberrantly mediates downstream signaling mechanisms. Notably, numerous recent research reports have shown the role of Caveolin-1 in tumor radioresistance and poor treatment outcome. Thus, Caveolin-1 could be a novel prognostic biomarker to monitor tumor radioresistance in cancer patients undergoing radiation therapy. CONCLUSIONS: Caveolin-1 has the promising potential to become a novel prognostic biomarker to monitor tumor radioresistance and radiation response specifically in the prostate, pancreas, and lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Caveolina 1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias/metabolismo , Neoplasias/radioterapia , Tolerância a Radiação , Animais , Medicina Baseada em Evidências , Humanos , Neoplasias/diagnóstico , Prognóstico , Resultado do Tratamento
15.
Cancer Lett ; 369(1): 28-36, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26276717

RESUMO

Cancer is the leading cause of mortality among men and women worldwide. Despite the availability of numerous diagnostic techniques for various cancers, the overall survival rate remains low and the majority of patients die due to late diagnosis and advanced stage of the disease. Diagnosing and treating cancer at its early stages ideally during the precancerous phase could significantly increase survival rate with the possibility of cure and prolong survival. Cancer is a genetic disease and it is illicitly activated by the acquisition of somatic DNA lesions and aberrations in genome structure and defects in maintenance and repair. These somatic DNA mutations known as driver mutations seem to be the prime cause in initiating tumorigenesis. The advances in genomic technologies have immensely facilitated the understanding of cancer progression and metastasis, and the discovery of novel biomarkers. However, changes in somatic mutational landscape of the oncogenome are translated into aberrantly regulated oncoproteome which drives the cancer initiation. Thus, combination of proteomic and genomic technologies is urgently required to discover biomarkers for early diagnosis. The recent advances in human genome based detection of cancer using advanced genomic technologies like NextGen Sequencing, digital PCR, cfDNA technology have shown promise; for example oncogenic somatic mutation variants, transcriptomic analysis, copy number variant, and methylation data from the Cancer Genome Atlas. Similarly, oncoproteomics has the potential to revolutionize clinical management of the disease, including cancer diagnosis and screening based on new proteomic database which embodies somatic variants and post translational modifications, thus devising proteomic technologies as a complement to histopathology. Further, the use of multiple proteomic and genomic biomarkers rather than a single gene or protein could greatly improve diagnostic accuracy and enhance the predictive power for treatment outcome and may enable adequate monitoring of the response to treatment and could be an important option for personalized medicine. The proteogenomic approach has the promise to identify new biomarkers for radiation therapy (RT) which could reliably predict the tumor radiation resistance and which could also accurately predict normal tissue toxicity, and at the same time radiotherapy effectiveness. In this review we have summarize the recent advances in proteogenomic approaches to develop more sensitive diagnostic and prognostic biomarkers which could be translated into improved clinical care and management of the disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico , Proteoma/metabolismo , Detecção Precoce de Câncer , Humanos , Neoplasias/metabolismo , Neoplasias/radioterapia , Medicina de Precisão , Prognóstico , Proteômica , Tolerância a Radiação
16.
Autoimmune Dis ; 2012: 728605, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23091704

RESUMO

Heat shock proteins (HSP) are a family of ubiquitous and phylogenically highly conserved proteins which play an essential role as molecular chaperones in protein folding and transport. Heat Shock Protein 90 (Hsp90) is not mandatory for the biogenesis of most proteins, rather it participate in structural maturation and conformational regulation of a number of signaling molecules and transcription factors. Hsp90 has been shown to play an important role in antigen presentation, activation of lymphocytes, macrophages, maturation of dendritic cells, and in the enhanceosome mediated induction of inflammation. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Dysregulated expression of Type I interferon α, activation of B cells and production of autoantibodies are hallmarks of SLE. The enhanced levels of Hsp90 were detected in the serum of SLE patients. The elevated level of Hsp90 in SLE has also been correlated with increased levels of IL-6 and presence of autoantibodies to Hsp90. This suggests that Hsp90 may contribute to the inflammation and disease progression and that targeting of Hsp 90 expression may be a potential treatment of SLE. The pharmacologic inhibition of Hsp90 was successfully applied in mouse models of autoimmune encephalomyelitis and SLE-like autoimmune diseases. Thus targeting Hsp90 may be an effective treatment for SLE, especially if combined with other targeted therapeutic approaches.

17.
Proteomics ; 12(19-20): 3085-104, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22890602

RESUMO

Membrane proteomic analysis has been proven to be a promising tool for identifying new and specific biomarkers that can be used for prognosis and monitoring of various cancers. Membrane proteins are of great interest particularly those with functional domains exposed to the extracellular environment. Integral membrane proteins represent about one-third of the proteins encoded by the human genome and assume a variety of key biological functions, such as cell-to-cell communication, receptor-mediated signal transduction, selective transport, and pharmacological actions. More than two-thirds of membrane proteins are drug targets, highlighting their immensely important pharmaceutical significance. Most plasma membrane proteins and proteins from other cellular membranes have several PTMs; for example, glycosylation, phosphorylation, and nitrosylation, and moreover, PTMs of proteins are known to play a key role in tumor biology. These modifications often cause change in stoichiometry and microheterogeneity in a protein molecule, which is apparent during electrophoretic separation. Furthermore, the analysis of glyco- and phosphoproteome of cell membrane presents a number of challenges mainly due to their low abundance, their large dynamic range, and the inherent hydrophobicity of membrane proteins. Under pathological conditions, PTMs, such as phosphorylation and glycosylation are frequently altered and have been recognized as a potential source for disease biomarkers. Thus, their accurate differential expression analysis, along with differential PTM analysis is of paramount importance. Here we summarize the current status of membrane-based biomarkers in various cancers, and future perspective of membrane biomarker research.


Assuntos
Biomarcadores Tumorais/análise , Proteínas de Neoplasias/análise , Proteômica/métodos , Animais , Glicosilação , Humanos , Proteínas de Membrana/análise , Fosforilação , Processamento de Proteína Pós-Traducional
18.
Proteome Sci ; 8: 11, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20199679

RESUMO

BACKGROUND: Our earlier studies have shown that red blood cell (RBC) morphology in Alzheimer's disease (AD) subjects was altered (> 15% of the RBCs were elongated as compared to 5.9% in normal controls (p < 0.0001)). These results suggested alterations in the RBC membrane architecture in AD subjects, possibly due to RBC-beta-amyloid interactions and/or changes in the expression of membrane proteins. We hypothesized that the observed changes could be due to changes in the level of the protein components of the cytoskeleton and those linked to the RBC membrane. To examine this, we performed a proteomic analysis of RBC membrane proteins of AD subjects, and their age-matched controls using one pool of samples from each group, following their separation by SDS-PAGE, in-gel Tryptic digestion, LC-MS-MS of peptides generated, and a label-free approach of semi-quantitative analysis of their relative MS spectral intensities. RESULTS: The data suggest, (1) RBC shape/morphology changes in AD subjects are possibly attributed primarily to the changes (elevation or decrease) in the level of a series of membrane/cytoskeleton proteins involved in regulating the stability and elasticity of the RBC membrane, and (2) changes (elevation or decrease) in the level of a second series of proteins in the RBC membrane proteome reflect similar changes reported earlier by various investigators in AD or animal model of AD. Of particular interest, elevation of oxidative stress response proteins such as heat shock 90 kDa protein 1 alpha in AD subjects has been confirmed by western blot analysis in the RBC membrane proteome. CONCLUSIONS: The results suggest that this study provides a potential link between the alterations in RBC membrane proteome in AD subjects and AD pathology.

19.
Toxins (Basel) ; 2(1): 1-9, 2010 01.
Artigo em Inglês | MEDLINE | ID: mdl-22069543

RESUMO

Botulinum neurotoxins (BoNTs) are highly potent poisons produced by seven serotypes of Clostridium botulinum. The mechanism of neurotoxin action is a multistep process which leads to the cleavage of one of three different SNARE proteins essential for synaptic vesicle fusion and transmission of the nerve signals to muscles: synaptobrevin, syntaxin, or SNAP-25. In order to understand the precise mechanism of neurotoxin in a host, the domain structure of the neurotoxin was analyzed among different serotypes of C. botulinum. The results indicate that neurotoxins type A, C, D, E and F contain a coiled-coil domain while types B and type G neurotoxin do not. Interestingly, phylogenetic analysis based on neurotoxin sequences has further confirmed that serotypes B and G are closely related. These results suggest that neurotoxin has multi-domain structure, and coiled-coil domain plays an important role in oligomerisation of the neurotoxin. Domain analysis may help to identify effective antibodies to treat Botulinum toxin intoxication.


Assuntos
Toxinas Botulínicas , Sorogrupo , Toxinas Botulínicas/genética , Toxinas Botulínicas Tipo A/metabolismo , Clostridium botulinum/metabolismo , Filogenia , Estrutura Terciária de Proteína , Proteína 25 Associada a Sinaptossoma/metabolismo
20.
Curr Genomics ; 8(1): 21-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18645629

RESUMO

The accelerated growth of proteomics data presents both opportunities and challenges. Large-scale proteomic profiling of biological samples such as cells, organelles or biological fluids has led to discovery of numerous key and novel proteins involved in many biological/disease processes including cancers, as well as to the identification of novel disease biomarkers and potential therapeutic targets. While proteomic data analysis has been greatly assisted by the many bioinformatics tools developed in recent years, a careful analysis of the major steps and flow of data in a typical highthroughput analysis reveals a few gaps that still need to be filled to fully realize the value of the data. To facilitate functional and pathway discovery for large-scale proteomic data, we have developed an integrated proteomic expression analysis system, iProXpress, which facilitates protein identification using a comprehensive sequence library and functional interpretation using integrated data. With its modular design, iProXpress complements and can be integrated with other software in a proteomic data analysis pipeline. This novel approach to complex biological questions involves the interrogation of multiple data sources, thereby facilitating hypothesis generation and knowledge discovery from the genomic-scale studies and fostering disease diagnosis and drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA