Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
J Clin Invest ; 134(3)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971886

RESUMO

While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multiomics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Among oncologic ROS, H2O2 specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine γ-lyase (CTH), which converts cystathionine to the nonessential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Cistationina/uso terapêutico , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , Multiômica , Hidrogéis
3.
JAMA Netw Open ; 6(8): e2329186, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589977

RESUMO

Importance: Central nervous system (CNS)-penetrant systemic therapies have significantly advanced care for patients with melanoma brain metastases. However, improved understanding of the molecular landscape and microenvironment of these lesions is needed to both optimize patient selection and advance treatment approaches. Objective: To evaluate how bulk and single-cell genomic features of melanoma brain metastases are associated with clinical outcome and treatment response. Design, Setting, and Participants: This cohort study analyzed bulk DNA sequencing and single nuclear RNA-sequencing data from resected melanoma brain metastases and included 94 consecutive patients with a histopathologically confirmed diagnosis of melanoma brain metastasis who underwent surgical resection at a single National Comprehensive Cancer Network cancer center in San Francisco, California, from January 1, 2009, to December 31, 2022. Exposure: A Clinical Laboratory Improvement Amendments-certified targeted sequencing assay was used to analyze tumor resection specimens, with a focus on BRAF V600E alteration. For frozen pathologic specimens from CNS treatment-naive patients undergoing surgical resection, commercial single nuclear RNA sequencing approaches were used. Main Outcomes and Measures: The primary outcome was overall survival (OS). Secondary outcomes included CNS progression-free survival (PFS), microenvironmental composition with decreased T-cell and macrophage populations, and responses to immunotherapy. Results: To correlate molecular status with clinical outcome, Kaplan-Meier survival analysis of 94 consecutive patients (median age, 64 years [range, 24-82 years]; 70 men [74%]) with targeted BRAF alteration testing showed worse median intracranial PFS (BRAF variant: 3.6 months [IQR, 0.1-30.6 months]; BRAF wildtype: 11.0 months [IQR, 0.8-81.5 months]; P < .001) and OS (BRAF variant: 9.8 months [IQR, 2.5-69.4 months]; BRAF wildtype: 23.2 months [IQR, 1.1-102.5 months]; P = .005; log-rank test) in BRAF V600E variant tumors. Multivariable Cox proportional hazards regression analysis revealed that BRAF V600E status was an independent variable significantly associated with both PFS (hazard ratio [HR], 2.65; 95% CI, 1.54-4.57; P < .001) and OS (HR, 1.96; 95% CI, 1.08-3.55; P = .03). For the 45 patients with resected melanoma brain metastases undergoing targeted DNA sequencing, molecular classification recapitulated The Cancer Genome Atlas groups (NRAS variant, BRAF variant, NF1 variant, and triple wildtype) with no subtype enrichment within the brain metastasis cohort. On a molecular level, BRAF V600E variant lesions were found to have a significantly decreased tumor mutation burden. Moreover, single nuclear RNA sequencing of treatment-naive BRAF V600E variant (n = 3) brain metastases compared with BRAF wildtype (n = 3) brain metastases revealed increased immune cell populations in BRAF wildtype tumors (mean [SD], 11% [4.1%] vs 3% [1.6%] CD45-positive cells; P = .04). Survival analysis of postoperative immunotherapy responses by BRAF status revealed that BRAF wildtype lesions were associated with a response to checkpoint inhibition (median OS: with immunotherapy, undefined; without immunotherapy, 13.0 months [range, 1.1-61.7 months]; P = .001; log-rank test) while BRAF variant lesions (median OS: with immunotherapy, 9.8 months [range, 2.9-39.8 months]; without immunotherapy, 9.5 months [range, 2.5-67.2 months]; P = .81; log-rank test) were not. Conclusions and Relevance: This molecular analysis of patients with resected melanoma brain metastases found that BRAF V600E alteration is an important translational biomarker associated with worse clinical outcomes, differential microenvironmental composition, and benefit from immunotherapy. Patients with BRAF V600E variant melanoma brain metastases may thus benefit from alternative CNS-penetrant systemic regimens.


Assuntos
Neoplasias Encefálicas , Melanoma , Masculino , Humanos , Pessoa de Meia-Idade , Estudos de Coortes , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Melanoma/genética , Melanoma/terapia , Microambiente Tumoral
4.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865128

RESUMO

While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multi-omics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Amongst oncologic ROS, hydrogen peroxide specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine gamma lyase (CTH), which converts cystathionine to the non-essential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.

5.
Nat Commun ; 14(1): 1333, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906610

RESUMO

The prototypic cancer-predisposition disease Fanconi Anemia (FA) is identified by biallelic mutations in any one of twenty-three FANC genes. Puzzlingly, inactivation of one Fanc gene alone in mice fails to faithfully model the pleiotropic human disease without additional external stress. Here we find that FA patients frequently display FANC co-mutations. Combining exemplary homozygous hypomorphic Brca2/Fancd1 and Rad51c/Fanco mutations in mice phenocopies human FA with bone marrow failure, rapid death by cancer, cellular cancer-drug hypersensitivity and severe replication instability. These grave phenotypes contrast the unremarkable phenotypes seen in mice with single gene-function inactivation, revealing an unexpected synergism between Fanc mutations. Beyond FA, breast cancer-genome analysis confirms that polygenic FANC tumor-mutations correlate with lower survival, expanding our understanding of FANC genes beyond an epistatic FA-pathway. Collectively, the data establish a polygenic replication stress concept as a testable principle, whereby co-occurrence of a distinct second gene mutation amplifies and drives endogenous replication stress, genome instability and disease.


Assuntos
Neoplasias da Mama , Anemia de Fanconi , Animais , Feminino , Humanos , Camundongos , Proteína BRCA2/genética , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Genótipo , Mutação , Fenótipo
6.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993266

RESUMO

Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.

7.
Epidemics ; 39: 100570, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569248

RESUMO

Mathematical modeling studies are frequently conducted to guide policy in global health. However, the contribution of mathematical modeling studies to World Health Organization (WHO) guideline recommendations, and the quality of evidence contributed by these studies remains unknown. We conducted a systematic review of the WHO Guidelines Review Committee database to identify guideline recommendations that included evidence from mathematical modeling studies since inception of the Guidelines Review Committee on 1 December, 2007. We included WHO guideline recommendations citing a mathematical modeling study in the primary evidence base. We defined a mathematical model as a framework that predicted epidemiologic, health or economic impact of an intervention or decision in the clinical or public health context. The primary outcome was inclusion of evidence from mathematical modeling studies in a guideline recommendation. We evaluated each unique modeling study across multiple domains of quality. Between 1 December 2007 and 1 April 2019, the WHO Guidelines Review Committee approved 154 guidelines providing 1619 guideline recommendations. Mathematical modeling studies informed 46 WHO guidelines (29.9%) and 101 unique guideline recommendations (6.2%). Modeling evidence addressed topics related to infectious diseases in 38 guidelines (82.6%) and 81 recommendations (80.2%), most commonly for HIV and tuberculosis. Evidence from modeling studies was assessed in the GRADE evidence profile for 12 recommendations (12.9%) and GRADE evidence-to-decision framework for 45 recommendations (44.6%). Modeling-informed recommendations were more likely than other recommendations within the same guidelines to be issued with a "conditional" rather than "strong" strength of recommendation (53.5% versus 37.8%), and the evidence underlying modeling-informed recommendations was more likely to be assessed as very low quality (41.6% versus 24.1%). Upon review of individual modeling studies, we estimated that 33.8% of models performed a calibration, 29.4% of models performed a validation of results, and 20.6% of models reported a change in the study conclusion in the sensitivity analysis. While policy recommendations in WHO guidelines are informed by evidence from modeling studies, the validity of modeling studies included in guidelines development is heterogeneous. Quality assessment is needed to support the evaluation and incorporation of evidence from mathematical modeling studies in guidelines development.


Assuntos
Medicina Baseada em Evidências , Modelos Teóricos , Calibragem , Medicina Baseada em Evidências/métodos , Saúde Pública , Organização Mundial da Saúde
8.
Sci Rep ; 12(1): 3055, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197495

RESUMO

A key public health question during any disease outbreak when limited vaccine is available is who should be prioritized for early vaccination. Most vaccine prioritization analyses only consider variation in risk of infection and death by a single risk factor, such as age. We provide a more granular approach with stratification by demographics, risk factors, and location. We use this approach to compare the impact of different COVID-19 vaccine prioritization strategies on COVID-19 cases, deaths and disability-adjusted life years (DALYs) over the first 6 months of vaccine rollout, using California as a case example. We estimate the proportion of cases, deaths and DALYs averted relative to no vaccination for strategies prioritizing vaccination by a single risk factor and by multiple risk factors (e.g. age, location). When targeting by a single risk factor, we find that age-based targeting averts the most deaths (62% for 5 million individuals vaccinated) and DALYs (38%) and targeting essential workers averts the least deaths (31%) and DALYs (24%) over the first 6 months of rollout. However, targeting by two or more risk factors simultaneously averts up to 40% more DALYs. Our findings highlight the potential value of multiple-risk-factor targeting of vaccination against COVID-19 and other infectious diseases, but must be balanced with feasibility for policy.


Assuntos
COVID-19
9.
Proc Natl Acad Sci U S A ; 117(21): 11432-11443, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32381732

RESUMO

The structure and mechanics of many connective tissues are dictated by a collagen-rich extracellular matrix (ECM), where collagen fibers provide topological cues that direct cell migration. However, comparatively little is known about how cells navigate the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a problem with fundamental implications for development, inflammation, and tumor invasion. Here, we demonstrate that glioblastoma cells adhere to and invade HA-rich matrix using microtentacles (McTNs), which extend tens of micrometers from the cell body and are distinct from filopodia. We observe these structures in continuous culture models and primary patient-derived tumor cells, as well as in synthetic HA matrix and organotypic brain slices. High-magnification and superresolution imaging reveals McTNs are dynamic, CD44-coated tubular protrusions containing microtubules and actin filaments, which respectively drive McTN extension and retraction. Molecular mechanistic studies reveal that McTNs are stabilized by an interplay between microtubule-driven protrusion, actomyosin-driven retraction, and CD44-mediated adhesion, where adhesive and cytoskeletal components are mechanistically coupled by an IQGAP1-CLIP170 complex. McTNs represent a previously unappreciated mechanism through which cells engage nanoporous HA matrix and may represent an important molecular target in physiology and disease.


Assuntos
Glioblastoma/patologia , Receptores de Hialuronatos/metabolismo , Actinas/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Técnicas de Inativação de Genes , Glioblastoma/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Técnicas de Cultura de Órgãos , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
10.
J Neurosci ; 38(12): 3081-3091, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29463641

RESUMO

Focused ultrasound has been shown to stimulate excitable cells, but the biophysical mechanisms behind this phenomenon remain poorly understood. To provide additional insight, we devised a behavioral-genetic assay applied to the well-characterized nervous system of Caenorhabditis elegans nematodes. We found that pulsed ultrasound elicits robust reversal behavior in wild-type animals in a pressure-, duration-, and pulse protocol-dependent manner. Responses were preserved in mutants unable to sense thermal fluctuations and absent in mutants lacking neurons required for mechanosensation. Additionally, we found that the worm's response to ultrasound pulses rests on the expression of MEC-4, a DEG/ENaC/ASIC ion channel required for touch sensation. Consistent with prior studies of MEC-4-dependent currents in vivo, the worm's response was optimal for pulses repeated 300-1000 times per second. Based on these findings, we conclude that mechanical, rather than thermal, stimulation accounts for behavioral responses. Further, we propose that acoustic radiation force governs the response to ultrasound in a manner that depends on the touch receptor neurons and MEC-4-dependent ion channels. Our findings illuminate a complete pathway of ultrasound action, from the forces generated by propagating ultrasound to an activation of a specific ion channel. The findings further highlight the importance of optimizing ultrasound pulsing protocols when stimulating neurons via ion channels with mechanosensitive properties.SIGNIFICANCE STATEMENT How ultrasound influences neurons and other excitable cells has remained a mystery for decades. Although it is widely understood that ultrasound can heat tissues and induce mechanical strain, whether or not neuronal activation depends on heat, mechanical force, or both physical factors is not known. We harnessed Caenorhabditis elegans nematodes and their extraordinary sensitivity to thermal and mechanical stimuli to address this question. Whereas thermosensory mutants respond to ultrasound similar to wild-type animals, mechanosensory mutants were insensitive to ultrasound stimulation. Additionally, stimulus parameters that accentuate mechanical effects were more effective than those producing more heat. These findings highlight a mechanical nature of the effect of ultrasound on neurons and suggest specific ways to optimize stimulation protocols in specific tissues.


Assuntos
Comportamento Animal/efeitos da radiação , Proteínas de Caenorhabditis elegans/efeitos da radiação , Proteínas de Membrana/efeitos da radiação , Neurônios/efeitos da radiação , Ondas Ultrassônicas , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Membrana/biossíntese , Neurônios/metabolismo , Tato/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA