Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 461(2): 132-144, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044379

RESUMO

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/fisiologia , Histona Metiltransferases/fisiologia , Proteína do Locus do Complexo MDS1 e EVI1/fisiologia , Crânio/embriologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Cromatina/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Orelha Média/anormalidades , Orelha Média/embriologia , Ossos Faciais/embriologia , Feminino , Genes Letais , Código das Histonas/genética , Histona Metiltransferases/deficiência , Histona Metiltransferases/genética , Histonas/metabolismo , Arcada Osseodentária/embriologia , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Masculino , Metilação , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional/genética , Especificidade da Espécie , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
2.
J Orthop Res ; 36(5): 1487-1497, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29068480

RESUMO

Phlpp protein phosphatases are abnormally abundant within human osteoarthritic articular chondrocytes and may contribute to the development of osteoarthritis. Mice lacking Phlpp1 were previously shown to be resistant to post-traumatic osteoarthritis. Here a small molecule with therapeutic properties that inhibits Phlpp1 and Phlpp2 was tested for its ability to slow post-traumatic OA in mice and to stimulate anabolic pathways in human articular cartilage from OA joints. PTOA was induced in male C57Bl/6 mice by surgically destabilizing the meniscus. Seven weeks after surgery, mice received a single intra-articular injection of the Phlpp inhibitor NSC117079 or saline. Mechanical allodynia was measured with von Frey assays, mobility was tracked in an open field system, and cartilage damage was assessed histologically. A single intra-articular injection of the Phlpp inhibitor NSC117079 attenuated mechanical allodynia and slowed articular cartilage degradation in joints with a destabilized meniscus. Animals treated with the Phlpp inhibitor 7 weeks after injury maintained normal activity levels, while those in the control group traveled shorter distances and were less active 3 months after the joint injury. NSC117079 also increased production of cartilage extracellular matrix components (glycosaminoglycans and aggrecan) in over 90% of human articular cartilage explants from OA patients and increased phosphorylation of Phlpp1 substrates (AKT2, ERK1/2, and PKC) in human articular chondrocytes. Our results indicate that Phlpp inhibitor NSC117079 is a novel osteoarthritis disease modifying drug candidate that may have palliative affects. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1487-1497, 2018.


Assuntos
Antraquinonas/farmacologia , Cartilagem Articular/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Sulfonamidas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antraquinonas/administração & dosagem , Cartilagem Articular/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Injeções Intra-Articulares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Osteoartrite/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Sulfonamidas/administração & dosagem , Microtomografia por Raio-X
3.
J Bone Miner Res ; 32(12): 2453-2465, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28782836

RESUMO

Long bone formation is a complex process that requires precise transcriptional control of gene expression programs in mesenchymal progenitor cells. Histone deacetylases (Hdacs) coordinate chromatin structure and gene expression by enzymatically removing acetyl groups from histones and other proteins. Hdac inhibitors are used clinically to manage mood disorders, cancers, and other conditions but are teratogenic to the developing skeleton and increase fracture risk in adults. In this study, the functions of Hdac3, one of the enzymes blocked by current Hdac inhibitor therapies, in skeletal mesenchymal progenitor cells were determined. Homozygous deletion of Hdac3 in Prrx1-expressing cells prevented limb lengthening, altered pathways associated with endochondral and intramembranous bone development, caused perinatal lethality, and slowed chondrocyte and osteoblast differentiation in vitro. Transcriptomic analysis revealed that Hdac3 regulates vastly different pathways in mesenchymal cells expressing the Prxx1-Cre driver than those expressing the Col2-CreERT driver. Notably, Fgf21 was elevated in Hdac3-CKOPrrx1 limbs as well as in chondrogenic cells exposed to Hdac3 inhibitors. Elevated expression of Mmp3 and Mmp10 transcripts was also observed. In conclusion, Hdac3 regulates distinct pathways in mesenchymal cell populations and is required for mesenchymal progenitor cell differentiation and long bone development. © 2017 American Society for Bone and Mineral Research.


Assuntos
Desenvolvimento Ósseo , Deleção de Genes , Histona Desacetilases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose , Osso e Ossos/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Lâmina de Crescimento/patologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Crânio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA